The heat absorbed by the water is
Q = 500 (4.18) (32.2 - 25)
Q = 15048 J
The enthalpy of fusion of the sodium acetate is:
<span>ΔHf = Q / m
</span><span>ΔHf = 15048 / 100
</span>ΔHf = 150.48 J/g
Answer:
The chemical potential of 2-propanol in solution relative to that of pure 2-propanol is lower by 2.63x10⁻³.
Explanation:
The chemical potential of 2-propanol in solution relative to that of pure 2-propanol can be calculated using the following equation:
<u>Where:</u>
<em>μ (l): is the chemical potential of 2-propanol in solution </em>
<em>μ° (l): is the chemical potential of pure 2-propanol </em>
<em>R: is the gas constant = 8.314 J K⁻¹ mol⁻¹ </em>
<em>T: is the temperature = 82.3 °C = 355.3 K </em>
<em>x: is the mole fraction of 2-propanol = 0.41 </em>

Therefore, the chemical potential of 2-propanol in solution relative to that of pure 2-propanol is lower by 2.63x10⁻³.
I hope it helps you!
If he was the primary scientist doing it as he did alot of the heavy lifting then yes its ok, but i also think how the others should also me at least mentioned. Or they could just not name the experiment by a person just so its not too biased
Answer:
1.09 L
Explanation:
There is some info missing. I think this is the original question.
<em>Calculate the volume in liters of a 0.360 mol/L barium acetate solution that contains 100 g of barium acetate. Be sure your answer has the correct number of significant digits.</em>
<em />
The molar mass of barium acetate is 255.43 g/mol. The moles corresponding to 100 grams are:
100 g × (1 mol/255.43 g) = 0.391 mol
0.391 moles of barium acetate are contained in an unknown volume of a 0.360 mol/L barium acetate solution. The volume is:
0.391 mol × (1 L/0.360 mol) = 1.09 L
Answer:
Nucleus, golgi apparatus, cell membrane