Option D
When you squeeze an air-filled balloon, what happens inside: There are more collisions of air molecules against the wall of the balloon.
<u>Explanation:</u>
If you compress off the balloon, one seemingly sense the air forcing up on the wall of the balloon with indeed more imposing power. This rise in force is due to a drop in quantity. By squeezing the balloon, you lessen the area the gas bits can hold.
As the particles are driven a little closer collectively, they oppose more, so the force from the moving gas bits rises. Boyle’s Law pronounces that the quantity of a determined quantity of gas limits as its load rises. If the quantity rises, its load reduces.
I think c I’m not positive about the question but I think c
Balanced Equation is
4H2SiCl2+4H2O → H8Si4O4 + 8HCl
Answer:

Explanation:
Hello.
In this case, taking into account that HCl has one molecule of hydrogen per mole of compound which weights 36.45 g/mol, we compute the number of molecules of hydrogen in hydrochloric acid by considering the given mass and the Avogadro's number:

Now, from the 180 g of water, we see two hydrogen molecules per molecule of water, thus, by also using the Avogadro's number we compute the molecules of hydrogen in water:

Thus, the total number of molecules turns out:

Regards.