Answer:
0.125 m
Explanation:
In this problem, we have:
v = 0.50 m/s is the average velocity of the wave
T = 0.25 s is the period of the wave
We can find the frequency of the wave, which is equal to the reciprocal of the period:

The problem is asking us to find the distance between two crests of the wave: this is equivalent to the wavelength. The wavelength is related to the average velocity and the frequency by the formula:

Substituting the numerical values, we find

Answer:
15 m per second
900m per minute
54,000 per hour
Explanation:
60 divided by 4 to get per second then times 60 for per minutes
then times 60 to get per hour
Answer:
Tension maximum =1131.9 N
Tension minimum =868.28 N
Tension at 3/4= 1065.995 N
Explanation:
a)
Given Mass of wrecking ball M1=88.6 Kg
Mass of the chain M2=26.9 Kg
Maximum Tension Tension max=(M1+M2) × (9.8 m/s²)
=(88.6+26.9) × (9.8 m/s²)
=115.5 × 9.8 m/s²
Tension maximum =1131.9 N
b)
Minimum Tension Tension minimum=Mass of the wrecking ball only × 9.8 m/s²
=88.6 × 9.8 m/s²
Tension minimum =868.28 N
c)
Tension at 3/4 from the bottom of the chain =In this part you have to use 75% of the chain so you have to take 3/4 of 26.9
= (3/4 × 26.9)+88.9) × 9.8 m/s²
= (20.175+88.6) × 9.8 m/s²
=(108.775) × 9.8 m/s²
=1065.995 N