Answer: option A is the correct answer.
Step-by-step explanation:
The cost of oranges in a grocery store is directly proportional to the number of oranges purchased. Jerri paid $2.52 for 6 oranges.
If p represents the cost, in dollars,and n represents the number of oranges purchased, then introducing a proportionality constant, k, the equation becomes
p = kn
2.52 = k × 6
k = 2.52/6 = 0.42
Therefore, the equation representing the relationship is
p = 0.42n
Answer:
03-a
Step-by-step explanation:
It's an algebraic expression cuz it has an unknown variable (a)
Answer:
- 1/3
- y-axis
- (1, -2)
Step-by-step explanation:
The length AC is 3, but the corresponding length FD is 1, so the dilation factor is FD/AC = 1/3.
The reflection is a left/right reflection, so it is across a vertical line. We suspect the only vertical line you are interested in is the y-axis. (It could be reflected across x=1/2, and then the only translation would be downward.)
The above transformations will put C' at (1, 0). Since the corresponding point D is at (2, -2), we know it is C' is translated by (1, -2) to get to D.
C' + translation = D
(1, 0) +(1, -2) = (2, -2)
Answer:
A) 9.56x10^38 ergs
B) 7.4x10^-3 mm
Step-by-step explanation:
A) 9.56x10^38 ergs B) 7.4x10^-3 mm A). For the sun, just multiply the power by time, so 3.9x10^33 erg/sec * 2.45x10^5 sec = 9.56x10^38 B) Of the two values 7.4x10^-3 and 7.4x10^3, the value 7.4x10^-3 is far more reasonable as a measurement for blood cell. Reason becomes quite evident if you take the 7.4x10^3 value and convert to a non-scientific notation value. Since the exponent is positive, shift the decimal point to the right. So 7.4x10^3 mm = 7400 mm, or in easier to understand terms, over 7 meters. That is way too large for a blood cell when you consider that you need a microscope to see one. Now the 7.4x10^-3 mm value converts to 0.0074 mm which is quite small and would a reasonable size for a blood cell.