Substitute the values given.
-2-3(2) then solve
Your answer should be -8
Formula is l x w x h
50x28x33=46200 cm^3
last choice 46,200 cm^3
Answer: We are given the number 173.514
Each of the digits in this number has the following place value:
![\begin{gathered} 1\rightarrow\text{ Hundreds} \\ 7\rightarrow\text{ Tens} \\ 3\rightarrow\text{ Ones} \\ \text{.}\rightarrow\text{ Decimal Point} \\ 5\rightarrow\text{ Tenth} \\ 1\rightarrow\text{ Hundreth} \\ 4\rightarrow\text{ Thousandth} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%201%5Crightarrow%5Ctext%7B%20Hundreds%7D%20%5C%5C%207%5Crightarrow%5Ctext%7B%20Tens%7D%20%5C%5C%203%5Crightarrow%5Ctext%7B%20Ones%7D%20%5C%5C%20%5Ctext%7B.%7D%5Crightarrow%5Ctext%7B%20%20Decimal%20Point%7D%20%5C%5C%205%5Crightarrow%5Ctext%7B%20Tenth%7D%20%5C%5C%201%5Crightarrow%5Ctext%7B%20%20Hundreth%7D%20%5C%5C%204%5Crightarrow%5Ctext%7B%20%20Thousandth%7D%20%5Cend%7Bgathered%7D)
Secondly, We have to identify the numbers in digit 185.712
Answer:
a) The mean is ![\mu = 60](https://tex.z-dn.net/?f=%5Cmu%20%3D%2060)
b) The standard deviation is ![\sigma = 9](https://tex.z-dn.net/?f=%5Csigma%20%3D%209)
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:
![Z = \frac{X - \mu}{\sigma}](https://tex.z-dn.net/?f=Z%20%3D%20%5Cfrac%7BX%20-%20%5Cmu%7D%7B%5Csigma%7D)
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
The probability a student selected at random takes at least 55.50 minutes to complete the examination equals 0.6915.
This means that when X = 55.5, Z has a pvalue of 1 - 0.6915 = 0.3085. This means that when ![X = 55.5, Z = -0.5](https://tex.z-dn.net/?f=X%20%3D%2055.5%2C%20Z%20%3D%20-0.5)
So
![Z = \frac{X - \mu}{\sigma}](https://tex.z-dn.net/?f=Z%20%3D%20%5Cfrac%7BX%20-%20%5Cmu%7D%7B%5Csigma%7D)
![-0.5 = \frac{55.5 - \mu}{\sigma}](https://tex.z-dn.net/?f=-0.5%20%3D%20%5Cfrac%7B55.5%20-%20%5Cmu%7D%7B%5Csigma%7D)
![-0.5\sigma = 55.5 - \mu](https://tex.z-dn.net/?f=-0.5%5Csigma%20%3D%2055.5%20-%20%5Cmu)
![\mu = 55.5 + 0.5\sigma](https://tex.z-dn.net/?f=%5Cmu%20%3D%2055.5%20%2B%200.5%5Csigma)
The probability a student selected at random takes no more than 71.52 minutes to complete the examination equals 0.8997.
This means that when X = 71.52, Z has a pvalue of 0.8997. This means that when ![X = 71.52, Z = 1.28](https://tex.z-dn.net/?f=X%20%3D%2071.52%2C%20Z%20%3D%201.28)
So
![Z = \frac{X - \mu}{\sigma}](https://tex.z-dn.net/?f=Z%20%3D%20%5Cfrac%7BX%20-%20%5Cmu%7D%7B%5Csigma%7D)
![1.28 = \frac{71.52 - \mu}{\sigma}](https://tex.z-dn.net/?f=1.28%20%3D%20%5Cfrac%7B71.52%20-%20%5Cmu%7D%7B%5Csigma%7D)
![1.28\sigma = 71.52 - \mu](https://tex.z-dn.net/?f=1.28%5Csigma%20%3D%2071.52%20-%20%5Cmu)
![\mu = 71.52 - 1.28\sigma](https://tex.z-dn.net/?f=%5Cmu%20%3D%2071.52%20-%201.28%5Csigma)
Since we also have that ![\mu = 55.5 + 0.5\sigma](https://tex.z-dn.net/?f=%5Cmu%20%3D%2055.5%20%2B%200.5%5Csigma)
![55.5 + 0.5\sigma = 71.52 - 1.28\sigma](https://tex.z-dn.net/?f=55.5%20%2B%200.5%5Csigma%20%3D%2071.52%20-%201.28%5Csigma)
![1.78\sigma = 71.52 - 55.5](https://tex.z-dn.net/?f=1.78%5Csigma%20%3D%2071.52%20-%2055.5)
![\sigma = \frac{(71.52 - 55.5)}{1.78}](https://tex.z-dn.net/?f=%5Csigma%20%3D%20%5Cfrac%7B%2871.52%20-%2055.5%29%7D%7B1.78%7D)
![\sigma = 9](https://tex.z-dn.net/?f=%5Csigma%20%3D%209)
![\mu = 55.5 + 0.5\sigma = 55.5 + 0.5*9 = 55.5 + 4.5 = 60](https://tex.z-dn.net/?f=%5Cmu%20%3D%2055.5%20%2B%200.5%5Csigma%20%3D%2055.5%20%2B%200.5%2A9%20%3D%2055.5%20%2B%204.5%20%3D%2060)
Question
The mean is ![\mu = 60](https://tex.z-dn.net/?f=%5Cmu%20%3D%2060)
The standard deviation is ![\sigma = 9](https://tex.z-dn.net/?f=%5Csigma%20%3D%209)
Answer for 1:
I don't know the actual answer, but for Forms, you can press ctrl + U and find the answers in the code
Answer for 2:
x = 28
Step-by-step explanation:
Since the overall angle is 90°, and we already have 33, we subtract 33 from 90
90 - 33 = 57
So we have to fill in the other 57°
2(28) = 56
56 + 1 = 57
So the answer is x = 28