Number 1 is 1/20 ,so number 0.5 is 1/40 of 20. so p=100/40 = 10/4 = 2.5%
so 0.5 is 2.5% of 20
proof: 2.5*20/100 =50/100 = 0.5
Answer:
(E) None of these above are true.
Step-by-step explanation:
Married = 74% or 0.74
College graduates = 42% or 0.42
pr(married | college graduates) = 0.56
(A) These events are pairwise disjoint. This is false. Pairwise disjoint are also known as mutually exclusive events. Here we can see that both events are occurring at same time.
(B) These events are independent events. This is also false.
(C) These events are both independent and pairwise disjoint. False
(D) A worker is either married or a college graduate always. False
Here Probability(A or B) shall be 1
= Pr(A) + Pr(B) - Pr( A and B) = 0.74 + 0.42 - 0.56 * 0.42 = 0.9248
This is not equal to 1.
(E) None of these above are true. This is true.
Answer:
760
Step-by-step explanation:
95 x 800 / 100 = 760
Answer:
<h2><DEF = 40</h2><h2><EBF = <EDF = 56</h2><h2><DCF = <DEF =40</h2><h2><CAB = 84</h2>
Step-by-step explanation:
In triangle DEF, we have:
<u>Given</u>:
<EDF=56
<EFD=84
So, <DEF =180 - 56 - 84 =40 (sum of triangle angles is 180)
____________
DE is a midsegment of triangle ACB
( since CD=DA(given)=>D is midpoint of [CD]
and BE = EA => E midpoint of [BA] )
According to midsegment Theorem,
(DE) // (CB) "//"means parallel
and DE = CB/2 = FB =CF
___________
DEBF is a parm /parallelogram.
<u>Proof</u>: (DE) // (FB) ( (DE) // (CB))
AND DE = FB
Then, <EBF = <EDF = 56
___________
DEFC is parm.
<u>Proof</u>: (DE) // (CF) ((DE) // (CB))
And DE = CF
Therefore, <DCF = <DEF =40
___________
In triangle ACB, we have:
<CAB =180 - <ACB - <ABC =180 - 40 - 56 =84(sum of triangle angles is 180)
