Answer:
2ax − 6ay + bx − 3
Step-by-step explanation:
The expression is not factorable with rational numbers
The answer is 9 you have to multiply 1/4 three times which gives you 1/64 then you take 576 and multiply it by 1/64 which gives you 9. Hope this helps.
Given:
AD is an angle bisector in triangle ABC.
.
To find:
The value of
.
Solution:
AD is an angle bisector in triangle ABC.



According to the angle sum property, the sum of all interior angles of a triangle is 180 degrees.
Using angle sum property in triangle CAD, we get





Therefore, the angle of angle ADC is
.
You forgot to include the given line.
We need the given line to find the slope. The slope of parallel lines are equal. So, the slope of the line of the equation you are looking for is the same slope of the given line.
I can explain you the procedure to help you to find the desired equation:
1) Slope
Remember that the slope-intercept equation form is y = mx + b where m is the slope and b is thye y-intercept.
If you clear y in every equation you get:
a) y = (3/4)x + 17/4 => slope = 3/4
b) y = (3/4)x + 20/4 = (3/4)x + 5 => slope = 3/4
c) y = -(4/3)x - 2/3 => slope = -4/3
d) y = (-4/3)x - 6/3 = (-4/3)x - 2 => slope = -4/3
So, you just have to compare the slope of the given line with the above slopes to see which equations are candidates.
2) Point (-3,2)
You must verify which equations pass through the point (-3,2).
a) 3x - 4y = - 17
3(-3) - 4(2) = -17
- 9 - 8 = - 17
- 17 = - 17 => it is candidate
b) 3x - 4y = - 20
- 17 ≠ - 20 => it is not candidate
c) 4x + 3y = - 2
4(-3) + 3(2) = - 2
-12 + 6 = - 2
-6 ≠ -2 => it is not candidate
d) 4x + 3y = - 6
-6 = - 6 => it is candidate
3) So, the point (-3,2) permits to select two candidates
3x - 4y = - 17, and 4x + 3y = -6.
4) Yet you have to find the slope of the given equation, if it is 3/4 the solutions is the equation 3x - 4y = -17; if it is -4/3 the solution is the equation 4x + 3y = -6.