1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stellarik [79]
3 years ago
7

Calculate the pZn of a solution prepared by mixing 25.0 mL of 0.0100 M EDTA with 50.0 mL of 0.00500 M Zn2 . Assume that both the

Zn2 and EDTA solutions are buffered with 0.100 M NH3 and 0.176 M NH4Cl.
Chemistry
1 answer:
egoroff_w [7]3 years ago
4 0

Answer:

\mathbf{pZn ^{2+} =8.8569 }

Explanation:

Using the approach of Henderson-HasselBalch equation, we have :

pH = pKa[NH^+_4] + log \dfrac{[NH_3]}{[NH_4^+]}

where;

the pKa of NH^+_4 = 9.26

concentration of NH_3 = 0.100 M

concentration of NH_4Cl = 0.176 M

∴

the pH of the buffered solution is :

pH = 9.26 + log \dfrac{[0.100]}{[0.176]}

pH = 9.26 + log (0.5682)

pH = 9.26 +(-0.2455)

pH =9.02

The Chemical equation for the reaction of Zn ^{2+} and EDTA is :

Zn^{2+}_{(aq)} + Y^{4-}_{(aq)}  \iff ZnY^{2-} _{(aq)}

Here;

Y^{4-}_{(aq)} denotes the fully deprotonated form of the EDTA

The formation constant K_f of the equation for the reaction can be represented as:

K_f = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ][Y^{4-}]}      ----- (1)

The logarithm of the formation constant of Zn - EDTA complex = 16.5

K_f  = 10^{16.5}

K_f  = 3.16  \times 10^{16}

Since the formation constant in the above equation signifies that the EDTA is present in  Y^{4-},

Then:

\alpha _{Y^{4-} }= \dfrac{Y^{4-}}{C_{EDTA}}

{Y^{4-}}= \alpha_ {Y^{4-}} \times {C_{EDTA}}

From (1)

K_f = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ][Y^{4-}]}  

K_f = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ] \ \  \alpha_ {Y^{4-}} \times {C_{EDTA}}}

∴

K_f' = K_f \times \alpha _Y{^4-} = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ] \ C_{EDTA} }

where;

K_f' = conditional formation constant

\alpha _Y{^4-} = the fraction of EDTA that exit in the form of the presences of the 4 charges .

So at equivalence point :

all the Zn^{2+} initially in titrand  is now present in ZnY^{2-}

K_f' = K_f \times \alpha _Y{^4-}

Obtaining the data for the value of \alpha _Y{^4-} at the reference table:

\alpha _Y{^4-}  =  5.4 \times 10^{-12}

∴

K_f' =  3.16 \times 10^{16} \times 5.4 \times 10^{-2}

K_f' =  1.7064 \times 10^{15}

To calculate the moles of  EDTA ,Zn^{2+}  , ZnY^{2-} ; we have:

moles of  EDTA = 0.0100 M × 0.025 L

moles of  EDTA = 2.5 \times 10^{-4} \ mole

moles of Zn^{2+} = 0.00500 M  × 0.050 L

moles of Zn^{2+} = 2.5 \times 10^{-4} \ mole

moles of  ZnY^{2-}  =  \dfrac{initial \ mole}{total \ volume}

moles of  ZnY^{2-}  = \dfrac{2.5 \times 10^{-4}}{ 0.025 + 0.050 }

moles of  ZnY^{2-}  = \dfrac{2.5 \times 10^{-4}}{ 0.075 }

moles of  ZnY^{2-}  = 0.0033333 M

Recall that:

K_f' = K_f \times \alpha _Y{^4-} = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ] \ C_{EDTA} }

K_f' = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ] \ C_{EDTA} }

Assume Q² is the amount of complex dissociated in ZnY^{2-}

ZnY^{2-}  \iff Zn^{2+} + C_{EDTA}  

i.e Q^2 = Zn^{2+} + C_{EDTA}

1.707 \times 10^{15}= \dfrac{0.0033333}{Q}

Q= \dfrac{0.0033333}{1.707 \times 10^{15}}

Q^2= \dfrac{0.0033333}{1.707 \times 10^{15}}

Q^2= 1.9527 \times 10^{-18}

Q= \sqrt{1.9527 \times 10^{-18}}

Q = 1.397 \times 10^{-9} M

[Zn^{2+}]= 1.39 \times 10^{-9} \ M

∴

pZn ^{2+} =- log [Zn^{2+}]

pZn ^{2+} = -  log (1.39 \times 10^{-9} ) \ M

\mathbf{pZn ^{2+} =8.8569 }

You might be interested in
If an atom of nitrogen bonded with an atom of aluminum , what kind of bond would form
Elodia [21]
Nitrogen is a non-metal and aluminum is a metal so the bond would be ionic.
5 0
3 years ago
During the reaction of 2,4-dinitrofluorobenzene with methoxide in methanol it was observed that it occurs at a significantly hig
Pachacha [2.7K]

Answer:

Explanation:

your not so smart

3 0
3 years ago
Hydrofluoric acid is what type of acid?
posledela

Hydrofluoric acid is a solution of hydrogen fluoride (HF) in water. Solutions of HF are colourless, acidic and highly corrosive. It is used to make most fluorine-containing compounds; examples include the commonly used pharmaceutical antidepressant medication fluoxetine (Prozac) and the material PTFE (Teflon).

5 0
3 years ago
Which of these elements have the same number of valance electrons
solmaris [256]
Both carbon and lead belong to Group IV elements, and thus they have the same number of valence electrons. 
<span>In each of the other options, the two elements belong to different groups, and thus they do NOT have the same number of valence electrons.

I hope this helped you, please tell me if I am correct or not <3
</span>
6 0
3 years ago
Based on the illustration below, explain how the different organ systems work together.
Stella [2.4K]

Answer:

this is not a proper informative question

8 0
3 years ago
Other questions:
  • Which element are cations? how do you know?
    15·2 answers
  • Water causes many electrolytes to dissociate __________.
    7·1 answer
  • What are 2 examples of ethical research behaviour?
    13·1 answer
  • A 2.0 L solution made by adding solid NaClO to water resulted in a basic equilibrium with a pH of 10.50. How many moles of NaClO
    5·1 answer
  • According to the following reaction, how many grams of hydrofluoric acid will be formed upon the complete reaction of 25.6 grams
    14·1 answer
  • Please Help ASAP! Will Mark Brainliest
    10·2 answers
  • Two atoms of the same element are most likely to form
    10·1 answer
  • 250 mL of 1.5 M nitric acid is mixed with 250 mL of 2.5 M sodium hydroxide. Calculate the pH of the resulting mixture.
    9·1 answer
  • Most grasshoppers stridulate to make sounds, what does that mean?
    9·1 answer
  • nitial mass of water, at its boiling point, is 0.8 kg. 4 kW of heater is used to boil it completely. Assuming the specific laten
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!