Answer:

Explanation:
Using the approach of Henderson-HasselBalch equation, we have :
![pH = pKa[NH^+_4] + log \dfrac{[NH_3]}{[NH_4^+]}](https://tex.z-dn.net/?f=pH%20%3D%20pKa%5BNH%5E%2B_4%5D%20%2B%20log%20%5Cdfrac%7B%5BNH_3%5D%7D%7B%5BNH_4%5E%2B%5D%7D)
where;
the pKa of
= 9.26
concentration of
= 0.100 M
concentration of
= 0.176 M
∴
the pH of the buffered solution is :
![pH = 9.26 + log \dfrac{[0.100]}{[0.176]}](https://tex.z-dn.net/?f=pH%20%3D%209.26%20%2B%20log%20%5Cdfrac%7B%5B0.100%5D%7D%7B%5B0.176%5D%7D)



The Chemical equation for the reaction of
and EDTA is :

Here;
denotes the fully deprotonated form of the EDTA
The formation constant
of the equation for the reaction can be represented as:
----- (1)
The logarithm of the formation constant of Zn - EDTA complex = 16.5
= 
= 
Since the formation constant in the above equation signifies that the EDTA is present in
,
Then:


From (1)
![K_f = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ] \ \ \alpha_ {Y^{4-}} \times {C_{EDTA}}}](https://tex.z-dn.net/?f=K_f%20%3D%20%5Cdfrac%7B%5BZnY%5E%7B2-%7D%5D%7D%7B%5BZn%5E%7B2%2B%7D%20%5D%20%5C%20%5C%20%20%5Calpha_%20%7BY%5E%7B4-%7D%7D%20%5Ctimes%20%7BC_%7BEDTA%7D%7D%7D)
∴
![K_f' = K_f \times \alpha _Y{^4-} = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ] \ C_{EDTA} }](https://tex.z-dn.net/?f=K_f%27%20%3D%20K_f%20%5Ctimes%20%5Calpha%20_Y%7B%5E4-%7D%20%3D%20%5Cdfrac%7B%5BZnY%5E%7B2-%7D%5D%7D%7B%5BZn%5E%7B2%2B%7D%20%5D%20%5C%20C_%7BEDTA%7D%20%7D)
where;
= conditional formation constant
= the fraction of EDTA that exit in the form of the presences of the 4 charges .
So at equivalence point :
all the
initially in titrand is now present in 

Obtaining the data for the value of
at the reference table:
= 
∴


To calculate the moles of EDTA ,
,
; we have:
moles of EDTA = 0.0100 M × 0.025 L
moles of EDTA = 
moles of
= 0.00500 M × 0.050 L
moles of
= 
moles of
= 
moles of
= 
moles of
= 
moles of
= 0.0033333 M
Recall that:
![K_f' = K_f \times \alpha _Y{^4-} = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ] \ C_{EDTA} }](https://tex.z-dn.net/?f=K_f%27%20%3D%20K_f%20%5Ctimes%20%5Calpha%20_Y%7B%5E4-%7D%20%3D%20%5Cdfrac%7B%5BZnY%5E%7B2-%7D%5D%7D%7B%5BZn%5E%7B2%2B%7D%20%5D%20%5C%20C_%7BEDTA%7D%20%7D)
![K_f' = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ] \ C_{EDTA} }](https://tex.z-dn.net/?f=K_f%27%20%3D%20%5Cdfrac%7B%5BZnY%5E%7B2-%7D%5D%7D%7B%5BZn%5E%7B2%2B%7D%20%5D%20%5C%20C_%7BEDTA%7D%20%7D)
Assume Q² is the amount of complex dissociated in
i.e 





Q =
M
![[Zn^{2+}]= 1.39 \times 10^{-9} \ M](https://tex.z-dn.net/?f=%5BZn%5E%7B2%2B%7D%5D%3D%201.39%20%5Ctimes%2010%5E%7B-9%7D%20%5C%20M)
∴

