1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stellarik [79]
3 years ago
7

Calculate the pZn of a solution prepared by mixing 25.0 mL of 0.0100 M EDTA with 50.0 mL of 0.00500 M Zn2 . Assume that both the

Zn2 and EDTA solutions are buffered with 0.100 M NH3 and 0.176 M NH4Cl.
Chemistry
1 answer:
egoroff_w [7]3 years ago
4 0

Answer:

\mathbf{pZn ^{2+} =8.8569 }

Explanation:

Using the approach of Henderson-HasselBalch equation, we have :

pH = pKa[NH^+_4] + log \dfrac{[NH_3]}{[NH_4^+]}

where;

the pKa of NH^+_4 = 9.26

concentration of NH_3 = 0.100 M

concentration of NH_4Cl = 0.176 M

∴

the pH of the buffered solution is :

pH = 9.26 + log \dfrac{[0.100]}{[0.176]}

pH = 9.26 + log (0.5682)

pH = 9.26 +(-0.2455)

pH =9.02

The Chemical equation for the reaction of Zn ^{2+} and EDTA is :

Zn^{2+}_{(aq)} + Y^{4-}_{(aq)}  \iff ZnY^{2-} _{(aq)}

Here;

Y^{4-}_{(aq)} denotes the fully deprotonated form of the EDTA

The formation constant K_f of the equation for the reaction can be represented as:

K_f = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ][Y^{4-}]}      ----- (1)

The logarithm of the formation constant of Zn - EDTA complex = 16.5

K_f  = 10^{16.5}

K_f  = 3.16  \times 10^{16}

Since the formation constant in the above equation signifies that the EDTA is present in  Y^{4-},

Then:

\alpha _{Y^{4-} }= \dfrac{Y^{4-}}{C_{EDTA}}

{Y^{4-}}= \alpha_ {Y^{4-}} \times {C_{EDTA}}

From (1)

K_f = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ][Y^{4-}]}  

K_f = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ] \ \  \alpha_ {Y^{4-}} \times {C_{EDTA}}}

∴

K_f' = K_f \times \alpha _Y{^4-} = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ] \ C_{EDTA} }

where;

K_f' = conditional formation constant

\alpha _Y{^4-} = the fraction of EDTA that exit in the form of the presences of the 4 charges .

So at equivalence point :

all the Zn^{2+} initially in titrand  is now present in ZnY^{2-}

K_f' = K_f \times \alpha _Y{^4-}

Obtaining the data for the value of \alpha _Y{^4-} at the reference table:

\alpha _Y{^4-}  =  5.4 \times 10^{-12}

∴

K_f' =  3.16 \times 10^{16} \times 5.4 \times 10^{-2}

K_f' =  1.7064 \times 10^{15}

To calculate the moles of  EDTA ,Zn^{2+}  , ZnY^{2-} ; we have:

moles of  EDTA = 0.0100 M × 0.025 L

moles of  EDTA = 2.5 \times 10^{-4} \ mole

moles of Zn^{2+} = 0.00500 M  × 0.050 L

moles of Zn^{2+} = 2.5 \times 10^{-4} \ mole

moles of  ZnY^{2-}  =  \dfrac{initial \ mole}{total \ volume}

moles of  ZnY^{2-}  = \dfrac{2.5 \times 10^{-4}}{ 0.025 + 0.050 }

moles of  ZnY^{2-}  = \dfrac{2.5 \times 10^{-4}}{ 0.075 }

moles of  ZnY^{2-}  = 0.0033333 M

Recall that:

K_f' = K_f \times \alpha _Y{^4-} = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ] \ C_{EDTA} }

K_f' = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ] \ C_{EDTA} }

Assume Q² is the amount of complex dissociated in ZnY^{2-}

ZnY^{2-}  \iff Zn^{2+} + C_{EDTA}  

i.e Q^2 = Zn^{2+} + C_{EDTA}

1.707 \times 10^{15}= \dfrac{0.0033333}{Q}

Q= \dfrac{0.0033333}{1.707 \times 10^{15}}

Q^2= \dfrac{0.0033333}{1.707 \times 10^{15}}

Q^2= 1.9527 \times 10^{-18}

Q= \sqrt{1.9527 \times 10^{-18}}

Q = 1.397 \times 10^{-9} M

[Zn^{2+}]= 1.39 \times 10^{-9} \ M

∴

pZn ^{2+} =- log [Zn^{2+}]

pZn ^{2+} = -  log (1.39 \times 10^{-9} ) \ M

\mathbf{pZn ^{2+} =8.8569 }

You might be interested in
When 7.80 mL of 0.500 M AgNO3 is added to 6.25 mL of 0.300 M NH4Cl, how many grams of AgCl are formed?
irina1246 [14]

Answer:

The answer to your question is 0.269 grams of AgCl

Explanation:

Data

[AgNO₃] = 0.50 M

Vol AgNO₃ = 7.80 ml

[NH₄Cl] = 0.30 M

Vol NH₄Cl = 6.25 ml

mass of AgCL

Balanced reaction

                 AgNO₃(aq)  +  NH₄Cl(aq)   ⇒   AgCl (s) + NH₄NO₃ (aq)

Process

1.- Calculate the moles of AgNO₃

Molarity = moles / volume

moles = Molarity x volume

moles = 0.50 x 0.0078

moles = 0.0039

2.- Calculate the moles of NH₄Cl

moles = 0.30 x 0.0063

moles = 0.00188

3.- Calculate the limiting reactant

The proportion of     AgNO₃(aq)  to  NH₄Cl(aq) is 1 :1, then, we conclude that the limiting reactant is NH₄Cl(aq), because there are less amount of this reactant in the experiment.

4.- Calculate the moles of AgCl

                     1 mol of NH₄Cl  ---------------- 1 mol of AgCl

              0.00188 mol of NH₄Cl ------------- x

                     x = (0.00188 x 1) /1

                     x = 0.00188 moles of AgCl

5.- Calculate the grams of AgCl

molecular mass of AgCl = 108 + 35.5 = 143.5 g

                         143.5 grams of AgCl -------------- 1 mol

                         x -------------------------------------------0.00188 moles of AgCl

                          x = (0.00188 x 143.5) / 1

                          x = 0.269 grams of AgCl

8 0
3 years ago
Help please
Lana71 [14]

Answer:

Yes

Explanation:

Based on the graph, nuclear energy is one of the least contributors of CO2 emissions.

You would support this source of energy .

8 0
3 years ago
A solution is made
Anna11 [10]

Answer:

99.3%

Explanation:

The percent by mass of the solute can be expressed as:

  • % mass = \frac{MassSolute}{MassSolute+MassSolvent} * 100%

And for this problem:

  • Mass of Solute = Mass of sodium lithium chloride = 29 g
  • Mass of Solvent = Mass of Water

So to calculate the percent by mass first we need to <u>calculate the mass of water</u>, to do so we use its<em> density</em> (1 g/L):

  • 202 mL is equal to (202/1000) 0.202 L.

Density water = mass water / volume

  • 1 g/L = mass water / 0.202 L
  • Mass water = 0.202 g

Now we have all the data required to <u>calculate the % mass:</u>

  • % mass = \frac{29g}{29g+0.202g} * 100 % = 99.3%
3 0
3 years ago
Read 2 more answers
Show the curved-arrow mechanism for the Claisen condensation of ethyl ethanoate treated with ethoxide ion. Include all formal ch
Anna [14]

Answer:

See explaination

Explanation:

Please kindly check out the attached files for the curved-arrow mechanism for the Claisen condensation of ethyl ethanoate treated with ethoxide ion.

4 0
3 years ago
Calculate the number of Li atoms in 9.5 moles of Li
kenny6666 [7]
Just multiply 9.5 by Avogadro's number. You get 5.72 x 10^24 atoms.
3 0
3 years ago
Other questions:
  • What mass of copper is equivalent to 0.7moles?​
    10·1 answer
  • Elements on the periodic table are arranged by increasing ?
    6·1 answer
  • Sulfur dioxide _____.
    7·1 answer
  • How is sodium extracted from is ore?
    9·1 answer
  • Determine the theoretical yield of HCl if 60.0 g of BC13 and 37.5 g of H20 are reacted according to the following balanced react
    8·1 answer
  • In the explosion of a hydrogen-filled balloon, 0.10 g of hydrogen reacted with 0.80 g of oxygen to form how many grams of water
    13·1 answer
  • 1. Mixing is a physical change.<br> True or false
    6·2 answers
  • Question 3
    8·1 answer
  • H2O2 is a polyatomic ion<br> ?
    10·1 answer
  • How much iodine (I2), in grams, should be added to water to produce 2.5L of solution with a molarity of 0.56M?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!