Answer:
-3.7771 × 10² kJ/mol
Explanation:
Let's consider the following equation.
3 Mg(s) + 2 Al³⁺(aq) ⇌ 3 Mg²⁺(aq) + 2 Al(s)
We can calculate the standard Gibbs free energy (ΔG°) using the following expression.
ΔG° = ∑np . ΔG°f(p) - ∑nr . ΔG°f(r)
where,
n: moles
ΔG°f(): standard Gibbs free energy of formation
p: products
r: reactants
ΔG° = 3 mol × ΔG°f(Mg²⁺(aq)) + 2 mol × ΔG°f(Al(s)) - 3 mol × ΔG°f(Mg(s)) - 2 mol × ΔG°f(Al³⁺(aq))
ΔG° = 3 mol × (-456.35 kJ/mol) + 2 mol × 0 kJ/mol - 3 mol × 0 kJ/mol - 2 mol × (-495.67 kJ/mol)
ΔG° = -377.71 kJ = -3.7771 × 10² kJ
This is the standard Gibbs free energy per mole of reaction.
 
        
             
        
        
        
Answer:
Lost pigment of marker when dipped in alcohol 
Explanation: 
 dependent viable = output 
so it's the output of what happens after the input.
- she put the marker in the water which is the independent variable, that's the input 
- the output or the result of that decision is having lost pigment in the marker 
 
        
             
        
        
        
Hello there.
<span>The rate of evaporation is affected by all of the following except
Answer: </span><span>B. the humidity. 
</span>
        
                    
             
        
        
        
2.99 °C is the change in temperature if a 40 g sample of water absorbs 500 calories of energy.
<h3>What is specific heat capacity?</h3>
The specific heat capacity is defined as the quantity of heat (J) absorbed per unit mass (kg) of the material when its temperature increases 1 K (or 1 °C), and its units are J/(kg K) or J/(kg °C).
Given data:
m = 40 g
Q = 500 J
Specific heat capacity of water = 4.18 J/g°C
Change in Temperature =?
The formula for Heat Energy is given by:
Q = mcp∆T
where: Q - Heat Energy
m - mass
cp - specific heat
∆T = change in temperature, 
Solution:
Substituting the value of m, specific heat capacity of water and Q in the formula,
500 J = (40 g)(4.18 J/g°C)(∆T)
∆T = 2.99 °C
Learn more about the specific heat capacity here:
https://brainly.ph/question/7099790
#SPJ1
 
        
             
        
        
        
Answer:
it does not show the actual number of atoms in that molecule