Answer:
0.0014 moles is present in 40cm³ of 0.035M of HCl solution
Explanation:
Molarity = 0.035M
V = 40.0mL
1mL = 1cm³
V = 40cm³
0.035 moles = 1000cm³
X moles is present in 40cm³
X = (40 * 0.035) / 1000
X = 0.0014moles
0.0014 moles is present in 40cm³ of solution
They're based on the results of your testing.
<span>Let's assume
that the oxygen gas has ideal gas behavior.
Then we can use ideal gas formula,
PV = nRT</span>
Where, P is the pressure of the gas (Pa), V is the volume of the gas
(m³), n is the number of moles of gas (mol), R is the universal gas
constant ( 8.314 J mol⁻¹ K⁻¹) and T is temperature in Kelvin.
<span>
P = 2.2 atm = 222915 Pa
V = 21 L = 21 x 10</span>⁻³ m³
n = ?
R = 8.314 J mol⁻¹ K⁻¹
<span>
T = 87 °C = 360 K
By substitution,
</span>222915 Pa x 21 x 10⁻³ m³ = n x 8.314 J mol⁻¹ K⁻<span>¹ x 360 K
n
= 1.56</span><span> mol</span>
<span>
Hence, 1.56 moles of the oxygen gas are </span><span>
left for you to breath.</span><span>
</span>
Answer:
An alcohol is an organic compound with a hydroxyl (OH) functional group on an aliphatic carbon atom. Because OH is the functional group of all alcohols, we often represent alcohols by the general formula ROH, where R is an alkyl group. Alcohols are common in nature.
Explanation: