Answer:
1.00 × 10¹⁸
Explanation:
1. Calculate the <em>energy of one photon</em>
The formula for the energy of a photon is
<em>E</em> = <em>hc</em>/λ
<em>h</em> = 6.626 × 10⁻³⁴ J·s; <em>c</em> = 2.998 × 10⁸ m·s⁻¹
λ = 477 nm = 477 × 10⁻⁹ m Insert the values
<em>E</em> = (6.626 × 10⁻³⁴ × 2.998× 10⁸)/(477 × 10⁻⁹)
<em>E</em> = 4.165× 10⁻¹⁹ J
2. Calculate the <em>number of photons</em>
Divide the total energy by the energy of one photon.
No. of photons = 0.418 × 1/4.165 × 10⁻¹⁹
No. of photons = 1.00 × 10¹⁸
<span>B) phosphodiester </span> is the correct answer
I will present a simple reaction so we can do this conversion:
2H₂ + O₂ → 2H₂O
We will assume we have 32 g of O₂ and we want to find the amount of water, assuming this reaction goes to completion. We must first convert the initial mass to moles, which we do using the molar mass in units of g/mol. The molar mass of O₂ is 32 g/mol.
32 g O₂ ÷ 32 g/mol = 1 mole O₂.
Now that we have moles of oxygen, we use the molar coefficients to find the ratio of water molecules to oxygen molecules. We can see there are 2 moles of water for every 1 mole of oxygen.
1 moles O₂ x (2 mol H₂O/ 1 mol O₂) = 2 moles H₂O
Now that we have the moles of water, we can convert this amount into grams using the molar mass of water, which is 18 g/mol.
2 moles H₂O x 18 g/mol = 36 g H₂O
Now we have successfully converted the mass of one molecule to the mass of another.
<span>NPK ratio system is a conventional shorthand for the ratio of the nitrogen N), phosphorus (P) and potassium (K) in a fertilizer. It actually shows amount of P</span>₂O₅.
If we use 100 kg of P₂O₅:
m(P₂O₅) = 0,15 · 100 kg.
m(P₂O₅) = 15 kg.
m(P₂O₅) : M(P₂O₅) = m(P) : 2M(P).
15 kg : 142 = m(P) : 62.
m(P) = 6,55 kg.
ω(P) = 6,55 kg ÷ 100 kg · 100% = 6,55%.