Answer:
Co2 answer
Explanation:
just add them all you will be able to get the answer
Answer:
The answer to this is
The velocity of the 27.3Kg marble after collision is = 16.24 cm/s
Explanation:
To solve the question, let us list out the given variables and their values
Mass of first marble m1 = 27.3g
Velocity of the first marble v1 = 21.0 cm/s
Mass of second marble m2 = 11.7g
Velocity of the second marble v2 = 12.6 cm/s
After collision va1 = unknown and va2 = 23.7 cm/s
From Newton's second law of motion, force = rate of change of momentum produced
Hence m1v1 + m2v2 = m1va1 + m2va2 or
va1 = (m1v1 + m2v2 - m2va2)÷m2 or (720. 72-277.29)÷m1 → va1 = 16.24 cm/s
The velocity of the 27.3Kg marble after collision is = 16.24 cm/s
1) during daylight, especially around noon, the relatively high air **temperature** and low humidity caused high evaporation, extracting pore water from the beach and leaving the **salt** behind, thereby resulting in high salinity near the beach surface (intertidal zone)
2) • algae and other intertidal plants grow in the abundant sunlight and support an entire food chain of animals
• constant wave action supplies the tide pool with **nutrients** and oxygen
• food is abundant
• a varied substrate provides hiding places and surfaces to cling to
3) the intertidal zone is one of a number of **marine** biomes or habitats, including: estuary (spray zone), neritic (lower/shallow zone), surface (middle zone), deep zones (high zones)