Answer:
E = 3.77×10⁻¹⁹ J
Explanation:
Given data:
Wavelength of absorption line = 527 nm (527×10⁻⁹m)
Energy of absorption line = ?
Solution:
Formula:
E = hc/λ
h = planck's constant = 6.63×10⁻³⁴ Js
c = speed of wave = 3×10⁸ m/s
by putting values,
E = 6.63×10⁻³⁴ Js × 3×10⁸ m/s / 527×10⁻⁹m
E = 19.89×10⁻²⁶ Jm /527×10⁻⁹m
E = 0.0377×10⁻¹⁷ J
E = 3.77×10⁻¹⁹ J
Answer:
the value of H° is below -6535 kj. +6H2O
Explanation:
6H2O answer solved
Answer:
The correct option is: Carbonate ion < Carbon dioxide < Carbon monoxide
Explanation:
Bond energy is defined as the average energy needed to break a chemical covalent bond and signifies the strength of chemical covalent bond.
The bond strength of a covalent bond depends upon the <u>bond length and the bond order.</u>
Carbon monoxide molecule (CO) has two covalent bond and one dative bond. Bond order 2.6
Carbon dioxide (CO₂) has two carbon-oxygen (C-O) double bonds of equal length. Bond order 2.0
Carbonate ion (CO₃²⁻) has three C-O partial double bonds. Bond order 1.5
Also, the bond length is <u>inversely proportional to the bond order and bond strength.</u>
Therefore, <u>order of C-O bond length:</u> Carbon monoxide<Carbon dioxide<Carbonate ion
<u>Order of C-O bond order</u>: Carbonate ion<Carbon dioxide<Carbon monoxide
<u>Order of C-O bond strength or energy</u><u>: Carbonate ion<Carbon dioxide<Carbon monoxide</u>
Answer:
30 neutrons
Explanation:
Since the mass of the iron nuclide is 56 , there must be 56−26=30 neutrons, 30 massive, neutral particles in this iron nucleus.
Molar mass SiO2 = 28 + 32 = 60
<span>so moles sand = 3.4 x 10-7 / 60</span>