<h2>
Answer: Gravitational attraction will be the same</h2>
According to the law of universal gravitation, which is a classical physical law that describes the gravitational interaction between different bodies with mass:
(1)
Where:
is the module of the force exerted between both bodies
is the universal gravitation constant.
and
are the masses of both bodies.
is the distance between both bodies
Now, if we double both masses and the distance also doubles, this means:
and
will be now
and 
will be now
Let's rewrite the equation (1) with this new values:
(2)
Solving and simplifying:
(3)
As we can see, equation (3) is the same as equation (1).
So, if the masses both double and the distance also doubles the <u>Gravitational attraction between both masses will remain the same.</u>
A wave can be described as the disturbance of particles in an area. Think about it this way: particles (matter) carry energy. For all the laws of physics to work, this energy must be "traded" somehow. This happens by miniscule vibrations in the particles, which are apparent disturbances. This creates a wave, and therefore a wave is, indeed, a disturbance.<span />
Electron as a free particle
Explanation:
Free electrons,the electrons which are not attached to the nucleus of a atom and free to move