Kinetic energy.
Kinetic energy is the type of energy observed in moving objects. In this case the football player is running, ie moving, so he/she must have kinetic energy.
Answer:
5558643.69 N
Explanation:
F = Force
v = Velocity = 31.5 knots
Converting to m/s
Power is given by
The forward force is exerted on the ship at this highest attainable speed is 5558643.69 N
Answer:
The bulk modulus of the liquid is 1.534 x 10¹⁰ N/m²
Explanation:
Given;
density of the liquid, ρ = 1500 kg/m³
frequency of the wave, F = 410 Hz
wavelength of the sound, λ = 7.80 m
The speed of the wave is calculated as;
v = Fλ
v = 410 x 7.8
v = 3,198 m/s
The bulk modulus of the liquid is calculated as;
Therefore, the bulk modulus of the liquid is 1.534 x 10¹⁰ N/m²
Answer:
Towards the west
Explanation:
Magnetic force is the interaction between a moving charged particle and a magnetic field.
Magnetic force is given as
F = q (V × B)
Where F is the magnetic force
q is the charge
V is the velocity
B is the magnetic field
V×B means the cross product of the velocity and the magnetic field
NOTE:
i×i=j×j×k×k=0
i×j=k. j×i=-k
j×k=i. k×j=-i
k×i=j. i×k=-j
So, if the electron is moving southward, then, it implies that the velocity of it motion is southward, so the electron is in the positive z-direction
Also, the electron is curved upward due to the magnetic field, this implies that the force field is directed up in the positive y direction.
Then,
V = V•k
F = F•j
Then, apply the theorem
F •j = q ( V•k × B•x)
Let x be the unknown
From vector k×i =j.
This shows that x = i
Then, the magnetic field point in the direction of positive x axis, which is towards the west
You can as well use the Fleming right hand rule
The thumb represent force
The index finger represent velocity
The middle finger represent field
The change in momentum of the car is 6000 kg m/s
Explanation:
According to the impulse theorem, the change in momentum of an object is equal to the impulse exerted on the object, therefore:
where
is the change in momentum
I is the impulse exerted
For the car in this problem, the impulse received is
I = 6000 kg m/s (in the forward direction)
Therefore, the change in momentum of the car is equal to this value:
(in the forward direction)
We can also calculate what is the new momentum of the car. In fact, the initial momentum is
And so, the new momentum is
Learn more about impulse and momentum:
brainly.com/question/9484203
#LearnwithBrainly