The correct option is B. More mass
Hope this helps you
Brainliest would be appreciated
-AaronWiseIsBae
A. 409 Hz
The fundamental frequency of a string is given by:

where
L is the length of the wire
T is the tension in the wire
m is the mass of the wire
For the piano wire in this problem,
L = 0.400 m
T = 1070 N
m = 4.00 g = 0.004 kg
So the fundamental frequency is

B. 24
For this part, we need to analyze the different harmonics of the piano wire. The nth-harmonic of a string is given by

where
is the fundamental frequency.
Here in this case

A person is capable to hear frequencies up to

So the highest harmonics that can be heard by a human can be found as follows:

Answer:
a) The object must have constant velocity.
d) The object must have zero acceleration.
Explanation:
We can solve the problem by using Newton's second law, which states that the net force acting on an object is equal to the product between mass and acceleration:

where
F is the net force
m is the mass of the object
a is the acceleration
In this problem, the net force on the object is zero:
F = 0
This means that the acceleration of the object is also zero, according to the previous equation:
a = 0
So statement (d) is correct. Moreover, acceleration is defined as the rate of change of velocity:

Which means that
, so the velocity is constant. Therefore, statement (a) is also correct. The other two statements are false because:
b)The object must be at rest. --> false, the object can be moving at constant velocity, different from zero
c)The object must be at the origin. --> false, since the object can be in motion
In the centripetal movement, what happens with velocity is that it will remain constant, always pointing in its tangential direction of the trajectory. Said speed, although constant, will have a constant direction that will generate an acceleration that will always point towards the center of the circle radius. Both vectors as the turn is performed will always be perpendicular to each other.