1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
igor_vitrenko [27]
3 years ago
14

What is the square root of 18457

Mathematics
2 answers:
Xelga [282]3 years ago
8 0
135.9 rounded to the nearest tenth
Ksivusya [100]3 years ago
3 0
The square root of 18,457 is 135.856541985.
You might be interested in
Help pls it's a math question
BigorU [14]
If i could see the whole spinner i could answer this for you!
7 0
3 years ago
Read 2 more answers
Can anyone help me with calculus??
gogolik [260]

1. If f(x)=(x+1)^4, then f'(x)=4(x+1)^3. So f'(1)=32.

2. With x^2+y^2=1, we differentiate once with respect to x and get

\dfrac{\mathrm d}{\mathrm dx}[x^2+y^2]=\dfrac{\mathrm d}{\mathrm dx}1

2x+2y\dfrac{\mathrm dy}{\mathrm dx}=0

\dfrac{\mathrm dy}{\mathrm dx}=-\dfrac xy

Differentiate again with respect to x and we get

\dfrac{\mathrm d^2y}{\mathrm dx^2}=-\dfrac{y-x\frac{\mathrm dy}{\mathrm dx}}{y^2}

\dfrac{\mathrm d^2y}{\mathrm dx^2}=-\dfrac{y+\frac{x^2}y}{y^2}=-\dfrac{y^2+x^2}{y^3}=-\dfrac1{y^3}

(where y\neq0).

3. Check the one-side limits where the pieces are split. For f to be continuous everywhere, we need

\displaystyle\lim_{x\to-1^-}f(x)=\lim_{x\to-1^+}f(x)=f(-1)

\displaystyle\lim_{x\to1^-}f(x)=\lim_{x\to1^+}f(x)=f(1)

In the first case, we have

\displaystyle\lim_{x\to-1^-}f(x)=\lim_{x\to-1}x+2=1

\displaystyle\lim_{x\to-1^+}f(x)=\lim_{x\to-1}x^2=1

and f(-1)=1, so it's continuous here.

In the second case, we have

\displaystyle\lim_{x\to1^-}f(x)=\lim_{x\to1}x^2=1

\displaystyle\lim_{x\to1^+}f(x)=\lim_{x\to1}3-x=2

so f is discontinuous at x=1.

4. If f(x)=3xe^x, then f'(x)=3e^x+3xe^x=3e^x(1+x)[tex]. So [tex]f'(0)=3.

5. If f(x)=(x+1)^2(x+2)^3, then f'(x)=2(x+1)(x+2)^3+3(x+1)^2(x+2)^2=(x+1)(x+2)^2(5x+7). So f'(0)=28.

6. The average velocity over [1, 2] is given by

\dfrac{s(2)-s(1)}{2-1}=(2^2+2)-(1^2+1)=4

7. If f(x)=\sin^2x, then f'(x)=2\sin x\cos x=\sin2x. So f'\left(\dfrac\pi4\right)=\sin\dfrac\pi2=1.

8. If f(x)=\log_23x, then

2^{f(x)}=3x\implies e^{\ln2^{f(x)}}=3x\implies e^{(\ln2)f(x)}=3x

Differentiating, we get

(\ln2)f'(x)e^{(\ln2)f(x)}=(\ln2)3xf'(x)=3\implies f'(x)=\dfrac1{(\ln2)x}

So f'(1)=\dfrac1{\ln2}.

9. If f(x)=\dfrac1{x^2}, then f'(x)=-\dfrac2{x^3}. So f'(1)=-2

10. If f(x)=-\dfrac{6x}{e^x+1}, then f'(x)=-\dfrac{6(e^x+1)-6xe^x}{(e^x+1)^2}=-\dfrac{6e^x(1-x)+6}{(e^x+1)^2}. So f'(0)=-\dfrac{12}4=-3.

7 0
4 years ago
Please anyone help me
docker41 [41]
<h2><u>Math</u><u> </u><u>Problem</u><u> </u></h2>

<u>If</u><u> </u><u>die</u><u> </u><u>is</u><u> </u><u>rolled</u><u> </u><u>two</u><u> </u><u>times</u><u>,</u><u> </u><u>find</u><u> </u><u>the</u><u> </u><u>probably</u><u> </u><u>of</u><u> </u><u>getting</u><u> </u><u>"</u><u>1'twice</u><u>.</u>

<h2><u>Math</u><u> </u><u>Answer</u><u> </u></h2>

<u>{1}\{36}</u>

<u>Feel</u><u> </u><u>fre</u><u> </u><u>e</u><u> </u><u>too</u><u> </u><u>ask</u><u> </u><u>me</u><u> </u>

<u>Please</u><u> </u><u>understand</u><u> </u><u>it</u>

<u>#BrainliestBunch</u>

8 0
4 years ago
What is 7/8 - 1/4 in simplest form?
Stells [14]

Answer: 5/8

Step-by-step explanation:

You could convert 1/4 to 2/8 because the numbers you're subtracting have a common factor of 2. After subtracting 2/8 from 7/8, you're left with 5/8.

4 0
2 years ago
Read 2 more answers
You buy cookies to share with your friends. You spend $11.88 on a dozen cookies. How much does 1 cookie cost?
never [62]
0.99 cents is the cost of each cookie. 
I hope I helped!
4 0
4 years ago
Other questions:
  • Emily is 50 years old. Colin is 18 years older than Emily. Dan is 6 years younger than Emily. What is the total of their combine
    12·1 answer
  • Factor by grouping: 3x^3 - 4x^2 + 15x - 20
    12·1 answer
  • What is the sum of 1 1/2 + 3 3/4 + 5 1/8 ?
    12·1 answer
  • Help please XD... super confused. (# 2)
    6·1 answer
  • Sara wants to find the input value that produces the same output for the functions represented by the tables.
    5·2 answers
  • Rounded232 to the nearest 10
    12·2 answers
  • 6,13,14,18,19,29,35,44,53,55,71,84,93 median
    15·1 answer
  • When the product of 0.2 and 0.3 is subtracted from the sun of 0.2 and 0.3 what is the difference
    14·2 answers
  • Please help for gods sake :((
    6·1 answer
  • Lucie and suzie buy greeting cards. lucie buys 10 more cards than one third of the girls’ total. how many more cards should suzi
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!