1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Westkost [7]
3 years ago
8

Determine the solution set of (x - 4)2 = 12

Mathematics
1 answer:
Travka [436]3 years ago
4 0

Answer:

10

Step-by-step explanation:

(x - 4) × 2 = 12

x - 4 = 12 ÷ 2

x - 4 = 6

x = 10

You might be interested in
Y=2x+3<br>4x+y=33<br>substitution form<br>(x, y)
galina1969 [7]
(5,13)

I hope the answer will help you in the solution if you want any question no hesitation

6 0
4 years ago
Is the equation true, false, or open? 9p+8=10p+7
stich3 [128]

The answer is A because it has a variable. HOPE THIS HELPS!!! <3

6 0
3 years ago
It is know that BD is an angle bisector with...
Georgia [21]

Answer: x = 10 or x = -6

Step-by-step explanation: If ray BD bisects <ABC, then <ABD ≅ <DBC.

So we can setup the equation x² - 4x = 60.

To solve this polynomial equation, we need to set it equal to 0.

So we subtract 60 from both sides to get x² - 4x - 60 = 0.

On the left, we have a trinomial in a special form that can

be factored as the product of two binomials.

In the first position of each binomial,

we have the factors of the x squared term, x and x.

In the second position, we're looking for the factors

of -60  that add to -4 which are -10 and +6.

So we have (x - 10)(x + 6) = 0.

Whenever two terms are multiplied together to equal 0,

this means that either one or the other must equal 0.

So if (x - 10)(x + 6) = 0, then either x - 10 = 0 or x + 6 = 0.

Solving each equation from here, we find that x = 10 or x = -6.

If you plug both values of x in for the measures of the angles,

you will find out that both of these give us true statements.

3 0
3 years ago
2. The ratio of radii of two cylinders is 1:2 and heights are in the ratio 2:3. Find the ratio of their volumes.
Savatey [412]

Answer: \frac{1}{6} or 1:6

Step-by-step explanation:

The volume of a cylinder can be found with the following formula:

V=\pi r^2h

Where "r" is the radius and "h" is the height of the cylinder.

In this case, let be:

- V_1 the volume of one of this cylinders and V_2 the volume of the other one.

- r_1 the radius of the first one and r_2 the radius of the other cylinder.

- h_1 the height of one of them and h_2 the height of the other cylinder.

Then:

V_1=\pi r_1^2h_1\\\\V_2=\pi r_2^2h_2

Therefore, you know this:

\frac{V_1}{V_2} =\frac{\pi r_1^2h_1}{\pi r_2^2h_2}

Simplifying, you get:

\frac{V_1}{V_2} =\frac{ r_1^2h_1}{ r_2^2h_2}

Now, knowing the ratios given in the exercise, you can substitute them into the equation:

\frac{V_1}{V_2} =\frac{1^2*2}{ 2^2*3}

Evaluating, you get:

\frac{V_1}{V_2} =\frac{2}{ 4*3}\\\\\frac{V_1}{V_2} =\frac{2}{12}\\\\\frac{V_1}{V_2} =\frac{1}{6}

4 0
4 years ago
2x2 + 3x + 1 = 0<br> A=<br> b =<br> C=
egoroff_w [7]

Answer:

ax2+bx+c

Step-by-step explanation:

A-2

B-3

C-1

7 0
3 years ago
Read 2 more answers
Other questions:
  • In the first year, an Australian rainforest received 201.25 cm of rain. In the second year, the rainforest received 158.11 cm of
    13·1 answer
  • Hi friends this is the full question
    14·1 answer
  • Can someone please simplify 3 1/3 divided by 2 2/5 please
    14·1 answer
  • -2x=10 (has picture)
    7·2 answers
  • The Westside recreation center built a new swimming pool that measures 20 ft by 15 ft find the perimeter and area of the pool al
    9·1 answer
  • When Jake volunteers at the animal shelter, he divides 2/3 cup of cat food equally between 2 cats. How much food does he give ea
    8·2 answers
  • Which would be the most appropriate way to estimate -6.1(0.22)? Check all that apply.
    11·2 answers
  • (8.95 x 10^8) - (1.5 x 10^6)
    15·1 answer
  • Help with translations!
    15·1 answer
  • Please hurry and explain it to me. Make it easy to understand!
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!