I hope this helps you
10 1/2 + 10 + 7 + 6 + 3 1/2 +4
10+1/2+27+3+1/2
40+1/2+1/2
40+2/2
40+1
41
Answer:
The equivalent will be:
![\frac{\sqrt[7]{x^2}}{\sqrt[5]{y^3}}=\left(\:x^{\frac{2}{7}}\right)\left(y^{-\frac{3}{5}}\right)](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B7%5D%7Bx%5E2%7D%7D%7B%5Csqrt%5B5%5D%7By%5E3%7D%7D%3D%5Cleft%28%5C%3Ax%5E%7B%5Cfrac%7B2%7D%7B7%7D%7D%5Cright%29%5Cleft%28y%5E%7B-%5Cfrac%7B3%7D%7B5%7D%7D%5Cright%29)
Therefore, option 'a' is true.
Step-by-step explanation:
Given the expression
![\frac{\sqrt[7]{x^2}}{\sqrt[5]{y^3}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B7%5D%7Bx%5E2%7D%7D%7B%5Csqrt%5B5%5D%7By%5E3%7D%7D)
Let us solve the expression step by step to get the equivalent
![\frac{\sqrt[7]{x^2}}{\sqrt[5]{y^3}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B7%5D%7Bx%5E2%7D%7D%7B%5Csqrt%5B5%5D%7By%5E3%7D%7D)
as
∵ ![\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a}=a^{\frac{1}{n}}](https://tex.z-dn.net/?f=%5Cmathrm%7BApply%5C%3Aradical%5C%3Arule%7D%3A%5Cquad%20%5Csqrt%5Bn%5D%7Ba%7D%3Da%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D)



also
∵ ![\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a}=a^{\frac{1}{n}}](https://tex.z-dn.net/?f=%5Cmathrm%7BApply%5C%3Aradical%5C%3Arule%7D%3A%5Cquad%20%5Csqrt%5Bn%5D%7Ba%7D%3Da%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D)



so the expression becomes


∵ 
Thus, the equivalent will be:
![\frac{\sqrt[7]{x^2}}{\sqrt[5]{y^3}}=\left(\:x^{\frac{2}{7}}\right)\left(y^{-\frac{3}{5}}\right)](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B7%5D%7Bx%5E2%7D%7D%7B%5Csqrt%5B5%5D%7By%5E3%7D%7D%3D%5Cleft%28%5C%3Ax%5E%7B%5Cfrac%7B2%7D%7B7%7D%7D%5Cright%29%5Cleft%28y%5E%7B-%5Cfrac%7B3%7D%7B5%7D%7D%5Cright%29)
Therefore, option 'a' is true.
This is classic Pythagorean solving:
Side^2 + Side^2 = Hypotenuse^2
The hypotenuse is the longest side of a triangle, and it connects the leg and the base usually. In this triangle, 18 is the hypotenuse -- so since we are solving for the unknown side, the equation is:
a^2 + 5.7^2 = 18^2 -- now solve
a^2 = 18^2 - 5.7^2
a^2 = 291.51
a = sqrt(291.51)
a = 17.07 -- because height is the square root of the difference of the squares of 18 and 5.7
The answer is choice B.
The standard form of hyperbola is:
(x-h)²/a²-(y-k)²/b²=1
center:(4,5)
Length of the horizontal transverse axis: 8-5=3=2a
thus
a=3/2
a²=9/4
b=2
b²=4
Hence the equation will be:
(x-4)²/(9/4)-(y-5)²/4=1
simplifying this we get:
[4(x-4)²]/9-(y-5)²/4=1
The percentage of employed children is:
100% -45% = 55%
Then, the percentage of employed children is:
100% -25% = 75%
Therefore, the number of employed children is given by:
(80) * (0.55) * (0.75) = 33
Answer:
there are 33 boys employed