Answer:
The factors are (x - (1 - i√3)/2) , (x - (1 + i√3)/2) , (x - 3) , (x + 3) , (x - 1)
The zeroes are 1 , 3 , -3 , (1 - i√3)/2 , (1 + i√3)/2
Step-by-step explanation:
÷ (x - 3) =
÷ (x - 3) =
÷ (x - 3) =
÷ (x - 3) =

÷ (x - 1) =
x³ + (4x³ + 0 - x - 3) ÷ (x - 1) =
x³ + 4x² + (4x² - x - 3) ÷ (x - 1) =
x³ + 4x² + 4x + (3x - 3) ÷ (x - 1) =
x³ + 4x² + 4x + 3
∵ -3 is a root ⇒ (x + 3) is a factor
(x³ + 4x² + 4x + 3) ÷ (x + 3) =
x² + (x² + 4x + 3) ÷ (x + 3) =
x² + x + (x + 3) ÷ (x + 3) =
x² + x + 1 ⇒ use the formula to find the factors of this quadratic
∵ a = 1 , b = 1 and c = 1
∴ 
∴ 
∴ The factors are (x - (1 - i√3)/2) , (x - (1 + i√3)/2) , (x - 3) , (x + 3) , (x - 1)
The zeroes:
x - 3 = 0 ⇒ x = 3
x + 3 = 0 ⇒ x = -3
x - 1 = 0 ⇒ x = 1
x - (1 - i√3)/2 = 0 ⇒ x = (1 - i√3)/2
x - (1 + i√3)/2 = 0 ⇒ x = (1 + i√3)/2
The zeroes are 1 , 3 , -3 , (1 - i√3)/2 , (1 + i√3)/2