
⭐ Elements in which the last electron enters any one of the five d-oribitals of their respective penultimate shells are called as <u>d-block</u><u> </u><u>elem</u><u>ents</u> .
⭐ But the last electron of Zn , Cd , Hg and Cn enters in the s-oribital of their respective ultimate shells rather than the d-oribitals of their respective penultimate shells . Therefore, these elements cannot be regarded as d-block elements .
☃️ But properties of these elements resemble to the d-block elements rather than s-block elements .
☃️ Therefore, to make the study of periodic classification of elements more rational, they are studied along with d-block elements .
✍️ Thus <u>on the basis of properties</u> all transition elements are d- block elements, but <u>on the basis of electronic configuration</u> all d -block elements are not transition elements .
Answer:
A,C,D,B
Explanation:
1killometer=1000m
1mm=0.001m
1cm=0.01m
base unit of length is meter
The element which has the electronic configuration is CHLORINE.
The atomic number of chlorine is 17 and it has 7 valence electrons in its outermost shell. Because it needs only one more electrons to have a stable octet, it usually react with metals from group one of the periodic table who are normally willing to donate the single electrons in their outermost shells. The ground state electronic configuration of chlorine atom is 1S^2 2S^2 2P^6 3S^2 3P^5.
Let's assume that the gas has ideal gas behavior.
Then we can use ideal gas equation,
PV = nRT
Where, P is Pressure of the gas (Pa), V is volume of the gas (m³), n is the number of moles of gas (mol), R is the Universal gas constant (8.314 J mol⁻¹ K⁻¹) and T is the temperature in Kelvin (K)
The given data for the gas is,
P = 2.8 atm = 283710 Pa
V = 98 L = 98 x 10⁻³ m³
T = 292 K
R = 8.314 J mol⁻¹ K⁻¹
n = ?
By applying the formula,
283710 Pa x 98 x 10⁻³ m³ = n x 8.314 J mol⁻¹ K⁻¹ x 292 K
n = 11.45 mol
Hence,moles of gas is 11.45 mol.