1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gala2k [10]
3 years ago
5

The original price of a pair of jeans is $32 the sales price 15% off the original price what is the amount off the original pric

e
Mathematics
1 answer:
ivolga24 [154]3 years ago
3 0

$32+15%=32.15

Hope this helps ^_^

You might be interested in
Use substitution to solve each of the following pairs of simultaneous equations.
Ronch [10]

Answer:

I will go for a part the rest You can do by yourself

Step-by-step explanation:

Multiply the second equation to get same amount of x in both equations

2x=2-3y/2

multiply both equations by 2 to get rid of the fraction in second equation

4x+14y=34

4x=4-3y

subtract equation(2) from equation(1)

14y=30+3y

11y=30

y=30/11, x=-23/22

6 0
3 years ago
Read 2 more answers
Irrational number between 7.7 and 7.9
monitta
That would be 7.8 (7.800) hope this helps! ;)
3 0
3 years ago
Please help I forgot how to do this
timofeeve [1]

Answer:

See answer below.

Step-by-step explanation:

2≥  g/-4

2( -4)  ≥  g

-8 ≥ g

graph :   Closed circle at -8 and shade to the left of -8  

                                         

3 0
2 years ago
Differentiate the function. y = (3x - 1)^5(4-x^4)^5​
TiliK225 [7]

Answer:

\displaystyle y' = -5(3x-1)^4(4 - x^4)^4(15x^4 - 4x^3 - 12)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

Distributive Property

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:                                                                                \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

y = (3x - 1)⁵(4 - x⁴)⁵

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                    \displaystyle y' = \frac{d}{dx}[(3x - 1)^5](4 - x^4)^5 + (3x - 1)^5\frac{d}{dx}[(4 - x^4)^5]
  2. Chain Rule [Basic Power Rule]:                                                                       \displaystyle y' =[5(3x - 1)^{5-1} \cdot \frac{d}{dx}[3x - 1]](4 - x^4)^5 + (3x - 1)^5[5(4 - x^4)^{5-1} \cdot \frac{d}{dx}[(4 - x^4)]]
  3. Simplify:                                                                                                             \displaystyle y' =[5(3x - 1)^4 \cdot \frac{d}{dx}[3x - 1]](4 - x^4)^5 + (3x - 1)^5[5(4 - x^4)^4 \cdot \frac{d}{dx}[(4 - x^4)]]
  4. Basic Power Rule:                                                                                             \displaystyle y' =[5(3x - 1)^4 \cdot 3x^{1 - 1}](4 - x^4)^5 + (3x - 1)^5[5(4 - x^4)^4 \cdot -4x^{4-1}]
  5. Simplify:                                                                                                             \displaystyle y' =[5(3x - 1)^4 \cdot 3](4 - x^4)^5 + (3x - 1)^5[5(4 - x^4)^4 \cdot -4x^3]
  6. Multiply:                                                                                                             \displaystyle y' = 15(3x - 1)^4(4 - x^4)^5 - 20x^3(3x - 1)^5(4 - x^4)^4
  7. Factor:                                                                                                               \displaystyle y' = 5(3x-1)^4(4 - x^4)^4\bigg[ 3(4 - x^4) - 4x^3(3x - 1) \bigg]
  8. [Distributive Property] Distribute 3:                                                                 \displaystyle y' = 5(3x-1)^4(4 - x^4)^4\bigg[ 12 - 3x^4 - 4x^3(3x - 1) \bigg]
  9. [Distributive Property] Distribute -4x³:                                                            \displaystyle y' = 5(3x-1)^4(4 - x^4)^4\bigg[ 12 - 3x^4 - 12x^4 + 4x^3 \bigg]
  10. [Brackets] Combine like terms:                                                                       \displaystyle y' = 5(3x-1)^4(4 - x^4)^4(-15x^4 + 4x^3 + 12)
  11. Factor:                                                                                                               \displaystyle y' = -5(3x-1)^4(4 - x^4)^4(15x^4 - 4x^3 - 12)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

6 0
3 years ago
Can someone help me pls?
gladu [14]

Answer:

A

Step-by-step explanation:

4 0
2 years ago
Other questions:
  • Determine the factors of x2 − 8x − 12.
    8·2 answers
  • Which statements are true regarding the data displayed in the box plots? Check all that apply
    12·2 answers
  • What is the simplified form of the following expression?
    15·1 answer
  • 4085 /43= what is the answer.
    9·2 answers
  • PLEASE ANSWER! WILL GIVE BRAINLIEST!
    11·1 answer
  • PLS HELP LOOK AT PIC
    9·1 answer
  • A robot’s height is 3 meters 40 centimeters. How tall is the robot in millimeters?
    11·1 answer
  • Whats the area of this figure​
    9·2 answers
  • A box is filled with 9 red crayons, 5 blue crayons, and 8 yellow crayons. A crayon is chosen at random from the box. Find the pr
    15·1 answer
  • Can somebody please help me, i really didnt understand my teacher at all
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!