Heat
gained in a system can be calculated by multiplying the given mass to the
specific heat capacity of the substance and the temperature difference. It is
expressed as follows:<span>
Heat = mC(T2-T1)
When two objects are in contact, it should be that the heat lost is equal to what is gained by the other. From this, we can calculate things. We do as follows:
</span>Heat gained = Heat lost
mC(T2-T1) = - mC(T2-T1)
31.5C (102.4 - 32.5) = 103.5(4.18)(32.5 - 24.5)
C = 1.57 J/C-g
Hope this helps.
<span>a.655 k not 100 percent on this but try it. You will use 273.15 and add your Celcius temp to get it in Kelvin
</span>
The wavelength of the orange line is 610 nm, the frequency of this emission is 4.92 x 10¹⁴ Hz and the energy of the emitted photon corresponding to this <em>orange line</em> is 3.26 x 10⁻¹⁹ J.
<em>"Your question is not complete, it seems to be missing the diagram of the emission spectrum"</em>
the diagram of the emission spectrum has been added.
<em>From the given</em><em> chart;</em>
The wavelength of the atomic emission corresponding to the orange line is 610 nm = 610 x 10⁻⁹ m
The frequency of this emission is calculated as follows;
c = fλ
where;
- <em>c is the speed of light = 3 x 10⁸ m/s</em>
- <em>f is the frequency of the wave</em>
- <em>λ is the wavelength</em>
The energy of the emitted photon corresponding to the orange line is calculated as follows;
E = hf
where;
- <em>h is Planck's constant = 6.626 x 10⁻³⁴ Js</em>
<em />
E = (6.626 x 10⁻³⁴) x (4.92 x 10¹⁴)
E = 3.26 x 10⁻¹⁹ J.
Thus, the wavelength of the orange line is 610 nm, the frequency of this emission is 4.92 x 10¹⁴ Hz and the energy of the emitted photon corresponding to this <em>orange line</em> is 3.26 x 10⁻¹⁹ J.
Learn more here:brainly.com/question/15962928
Heat Transfer Lab
The following represents a lab set up for heat transfer. The cup on the left started with boiling water at 100 degrees C and the cup on the right has water at 20 degrees C. There is an aluminum bar between the two cups allowing heat to transfer from one cup into the other. The set up will be left alone for 20 minutes and temperatures of each cup of water will be recorded every minute for 20 minutes.
mag-aral ka
Answer:
<h3>The answer is 10 g/mL</h3>
Explanation:
The density of a substance can be found by using the formula
From the question
mass = 300 g
volume = final volume of water - initial volume of water
volume = 40 - 10 = 30 mL
We have
We have the final answer as
<h3>10 g/mL</h3>
Hope this helps you