Answer:
Saturated solution = 180 gram
Explanation:
Given:
Solubility of Z = 60 g / 100 g water
Given temperature = 20°C
Amount of water = 300 grams
Find:
Saturated solution
Computation:
Saturated solution = [Solubility of Z] × Amount of water
Saturated solution = [60 g / 100 g] × 300 grams
Saturated solution = [0.6] × 300 grams
Saturated solution = 180 gram
The number of particles in one mole is given be Avagadro's number <span>6.022×10^23
Multiply by number of moles.
3 ×10^-21 mol * 6.022 ×10^23 molecules/mol = </span><span>1,807 molecules
(rounded to nearest whole number)
</span>
<span>On the periodic table, the majority of elements are classified as "Metals"
In short, Your Answer would be Option A
Hope this helps!</span>
This will be classified as light on the API scale due to the large percentage of lighter fractions such as paraffins and naphthenes.
Answer:
126.0g of water were initially present
Explanation:
The electrolysis of water occurs as follows:
2H₂O(l) ⇄ 2H₂(g) + O₂(g)
<em>Where 2 moles of water produce 2 moles of hydrogen and 1 mole of oxygen.</em>
<em />
To find the mass of water we need to determine moles of oxygen and hydrogen, thus:
<em>Moles Hydrogen:</em>
14.0g H₂ ₓ (1mol / 2g H₂) = 7 moles H₂
<em>Moles Oxygen:</em>
112.0g O₂ ₓ (1mol / 32g) = 3.5 moles O₂
Based on the chemical equation, the moles of water initially present were 7 moles (That produce 7 moles H₂ and 3.5 moles O₂). The mass of 7 moles of H₂O is:
7 moles H₂O * (18g / mol) =
<h3>126.0g of water were initially present</h3>