1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lilavasa [31]
3 years ago
8

I im a product. One of my factors is 7.The sum of my factors equals 11.What number am i?

Mathematics
1 answer:
madam [21]3 years ago
8 0

Try this solution:

if the sum is 11 and the first factor is 7, the second one is 11-7=4.

The required number is 7*4=28

Answer: 28

You might be interested in
A parallelogram is made up of a rectangle with a base of 12 centimeters (cm) and a height of 5 cm, and two triangles, each with
valkas [14]
No, he forgot to add the area of the triangles to the area of the rectangle.

It is said that Jeremy thought he solved for the area of the whole parallelogram correctly by multiplying the base and height of the rectangle, which is just a part of the whole parallelogram.

Jeremy’s answer is incomplete, he only calculated the area of the triangle as the answer.

This is because one way of finding an area of a parallelogram is dividing the shape into a rectangle with a triangle on each side.

The real area of the parallelogram is 70 cm^2
(with areas of each triangles added)

With that being said, the formula of a parallelogram that is said is:
A = bh
Which means a height perpendicular to the base of the whole paralleogram.
3 0
2 years ago
La empresa los manzanas exporta manzanas o varios paises del mundo, el lunes tiene que trasladar 300 cajones. Puede contratar ca
Mariulka [41]

Answer:

Para trasladar 300 cajones, las dos opciones cuestan los mismo. Son indiferentes entre si.

Step-by-step explanation:

<u>Dada la siguiente información:</u>

<u></u>

Cantidad de cajones= 300

Opción A:

Camiones con capacidad para 50 cajones que cobran 150 por viaje.

Cantidad de camiones= 300/50= 6

Opción B:

Camiones con capacidad de 60 cajones por 180 por viaje.

Cantidad de camiones= 300/60= 5

<u>Debemos calcular el costo total de cada opción y elegir la de menor costo.</u>

Costo total A= 150*6= $900

Costo total B=180*5= $900

Para trasladar 300 cajones, las dos opciones cuestan los mismo. Son indiferentes entre si.

5 0
2 years ago
How many terms in 2-8+22<br> A. 1<br> B. 2<br> C. 3<br> D. 26
natima [27]

Answer:

6 is the answer.

is it right

4 0
3 years ago
Define the double factorial of n, denoted n!!, as follows:n!!={1⋅3⋅5⋅⋅⋅⋅(n−2)⋅n} if n is odd{2⋅4⋅6⋅⋅⋅⋅(n−2)⋅n} if n is evenand (
tekilochka [14]

Answer:

Radius of convergence of power series is \lim_{n \to \infty}\frac{a_{n}}{a_{n+1}}=\frac{1}{108}

Step-by-step explanation:

Given that:

n!! = 1⋅3⋅5⋅⋅⋅⋅(n−2)⋅n        n is odd

n!! = 2⋅4⋅6⋅⋅⋅⋅(n−2)⋅n       n is even

(-1)!! = 0!! = 1

We have to find the radius of convergence of power series:

\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}](8x+6)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}]2^{n}(4x+3)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}](x+\frac{3}{4})^{n}\\

Power series centered at x = a is:

\sum_{n=1}^{\infty}c_{n}(x-a)^{n}

\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}](8x+6)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}]2^{n}(4x+3)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}4^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}](x+\frac{3}{4})^{n}\\

a_{n}=[\frac{8^{n}4^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}]\\\\a_{n+1}=[\frac{8^{n+1}4^{n+1}n!(3(n+1)+3)!(2(n+1))!!}{[(n+1+9)!]^{3}(4(n+1)+3)!!}]\\\\a_{n+1}=[\frac{8^{n+1}4^{n+1}(n+1)!(3n+6)!(2n+2)!!}{[(n+10)!]^{3}(4n+7)!!}]

Applying the ratio test:

\frac{a_{n}}{a_{n+1}}=\frac{[\frac{32^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}]}{[\frac{32^{n+1}(n+1)!(3n+6)!(2n+2)!!}{[(n+10)!]^{3}(4n+7)!!}]}

\frac{a_{n}}{a_{n+1}}=\frac{(n+10)^{3}(4n+7)(4n+5)}{32(n+1)(3n+4)(3n+5)(3n+6)+(2n+2)}

Applying n → ∞

\lim_{n \to \infty}\frac{a_{n}}{a_{n+1}}= \lim_{n \to \infty}\frac{(n+10)^{3}(4n+7)(4n+5)}{32(n+1)(3n+4)(3n+5)(3n+6)+(2n+2)}

The numerator as well denominator of \frac{a_{n}}{a_{n+1}} are polynomials of fifth degree with leading coefficients:

(1^{3})(4)(4)=16\\(32)(1)(3)(3)(3)(2)=1728\\ \lim_{n \to \infty}\frac{a_{n}}{a_{n+1}}=\frac{16}{1728}=\frac{1}{108}

4 0
3 years ago
WILL MARK BRAINLIST JUST HELP ME
alexdok [17]

Answer:

A

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • 39/4 as a mixed number
    14·2 answers
  • HELP 1 QUESTION!! Whoever answers with a explanation and is correct first will get marked brainlist!!
    12·1 answer
  • How to simplyfi the fraction 9/11 in simplest form
    15·1 answer
  • What are the coordinates of point C of the directed segment from A(-8,4) to B(10,-2) that partitions the segment such that AC:CB
    9·1 answer
  • A boy mentions that none of the 21 kids in his third-grade class has had a birthday since school started 56 days previously. ass
    14·2 answers
  • Penny reads 11 pages in one fourth hour. What is the unit rate for pages per​ hour? For hours per​ page?
    11·2 answers
  • NEED HELP ASP Find the common difference of the arithmetic sequence -8, -15, -22, ...
    11·1 answer
  • The width of a rectangle is 2x + 4 and the length of the
    5·1 answer
  • Can somebody answer this question? Please show work and whoever does it best get's brainliest and 5/5 stars
    14·1 answer
  • What is the range of the function y = x^2?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!