(-2,-2)
Since it has a negative in front of the absolute value, the graph is a downward cone.
Answer:
- (-16x² +10x -3) +(4x² -29x -2)
- (2x² -11x -9) -(14x² +8x -4)
- 2(x -1) -3(4x² +7x +1)
Step-by-step explanation:
I find it takes less work if I can eliminate obviously wrong answers. Toward that end, we can consider the constant terms only:
- -3 +(-2) = -5 . . . . possible equivalent
- -10 -5 = -15 . . . . NOT equivalent
- 3(-5) -2(5) = -25 . . . . NOT equivalent
- -9 -(-4) = -5 . . . . possible equivalent
- -7 -(-5) = -2 . . . . NOT equivalent
- 2(-1) -3(1) = -5 . . possible equivalent
Now, we can go back and check the other terms in the candidate expressions we have identified.
1. (-16x² +10x -3) +(4x² -29x -2) = (-16+4)x² +(10-29)x -5 = -12x² -19x -5 . . . OK
4. (2x² -11x -9) -(14x² +8x -4) = (2-14)x² +(-11-8)x -5 = -12x² -19x -5 . . . OK
6. 2(x -1) -3(4x² +7x +1) = -12x² +(2 -3·7)x -5 = -12x² -19x -5 . . . OK
All three of the "possible equivalent" expressions we identified on the first pass are fully equivalent to the target expression. These are your answer choices.
Answer:
25.5 mph
Step-by-step explanation:
So Bradley's speed can be modeled by the equation y=2x+40 where y=speed, x=time in hours after noon, and b=initial speed
So 12:15 is 15 minutes after noon, which is also 0.25 or 1/4 of an hour after noon. This is the x-value. Plug this into the equation to get his speed at 12:15
y=2(0.25)+40
y=0.5+40
y=40.5
So his speed was 40.5 at the time and since he was going 15 miles over the speed limit, the speed limit is 15 less than his speed
40.5 - 15 = 25.5
Hello!
There is an existing logarithmic property that states that

is equal to

.
Following that property, we can tell that

would be equal to

.
ANSWER: 
(third option)