The measure of angle 1 and 2 should add up to 180°, because it forms a straight line. The same goes for the sum of angle 3 and 4.
Since we are given the measure of angle 2, we can find the measure of angle 1 by subtracting 143° from 180°.
180°-143° = 37°
We know that the intersecting lines form 2 sets of vertical angles, which are congruent. This means that the angles opposite from each other have the same measure. Therefore, both angle 2 & 4 have a measure of 143°, while angle 1 & 3 have a measure of 37°.
Let the number of bike be x and the number of skates be y, then
21x + 20y ≥ 362 . . . (1)
2y = x . . . (2)
Putting (2) into (1), then
21(2y) + 20y ≥ 362
42y + 20y ≥ 362
62y ≥ 362
y ≥ 5.84
The least number of pairs of skates they need to rent each day to make their minimum is 6.
Y= arcsin(x) is equivalent to sin(y) = x
we know that -1≤x+1, hence the range of y is: -π/2≤y≤+π/2
I think it’s -6 but I’m not sure
Answer: 321.4167 or about 322 boxes
Step-by-step explanation: