The irrational numbers are: √8, √10 and √15
Step-by-step explanation:
A rational number is a number that can be written in the form p/q where p&q are integers and q≠0.
"All the numbers whose square root is not a whole number and has an infinite number of digits after decimal, are irrational numbers"
So in the given options
Which can be written in the required form so √4 is a rational number
√8 has an infinite expansion hence it cannot be written in the p/q form, so it is an irrational number
√10 has an infinite expansion hence it cannot be written in the p/q form, so it is an irrational number
√15 has an infinite expansion hence it cannot be written in the p/q form, so it is an irrational number
Which can be written in the required form so √36 is a rational number
Hence,
The irrational numbers are: √8, √10 and √15
Keywords: Rational numbers, Irrational numbers
Learn more about rational numbers at:
#LearnwithBrainly