Answer:
they need a high ‘surface to volume’ ratio, which is good for exchanging materials between the inside and outside of cells. But this is probably not really the size-limiting reason, since cells vary enormously in size and surface area to volume ratios.
Explanation:
Glucose is consumed and carbon dioxide is produced during the combined processes of glycolysis and cellular respiration.
Glucose is a simple sugar. Glucose is the most common monosaccharide, a type of carbohydrate. Glucose is primarily produced by plants and most algae during photosynthesis from water and carbon dioxide with the help of sunlight, where it is used to produce cellulose in cell walls, the world's most abundant carbohydrate.
A glucose molecule is gradually broken down into carbon dioxide and water during cellular respiration. Some ATP is produced directly along the way in the reactions that transform glucose. However, much more ATP is produced later in the process known as oxidative phosphorylation. The movement of electrons through the electron transport chain, a series of proteins embedded in the inner membrane of the mitochondrion, drives oxidative phosphorylation.
During glycolysis, a six-carbon sugar, glucose, undergoes a series of chemical transformations. It eventually degrades into two molecules of pyruvate, a three-carbon organic molecule. ATP is produced in these reactions.
For more information on Glucose, visit :
brainly.com/question/2396657
#SPJ4
Answer:
<em>T</em>rue
Explanation:
Rhizopus is a genus of common fungi that develops on plants and specialized parasites on animals, it is fairly common in all kinds of foods like mature fruits, jellies, syrups, bread, peanuts, etc. They develop hyphae called rhizoids on this food and can be visible.
Answer:
When a muscle cell contracts, the myosin heads each produce a single power stroke.
Explanation:
In rest, attraction strengths between myosin and actin filaments are inhibited by the tropomyosin. When the muscle fiber membrane depolarizes, the action potential caused by this depolarization enters the t-tubules depolarizing the inner portion of the muscle fiber. This activates calcium channels in the T tubules membrane and releases calcium into the sarcolemma. At this point, <em>tropomyosin is obstructing binding sites for myosin on the thin filament</em>. When calcium binds to the troponin C, the troponin T alters the tropomyosin by moving it and then unblocks the binding sites. Myosin heads bind to the uncovered actin-binding sites forming cross-bridges, and while doing it ATP is transformed into ADP and inorganic phosphate which is liberated. Myofilaments slide impulsed by chemical energy collected in myosin heads, <u>producing a power stroke</u>. The power stroke initiates when the myosin cross-bridge binds to actin. As they slide, ADP molecules are released. A new ATP links to myosin heads and breaks the bindings to the actin filament. Then ATP splits into ADP and phosphate, and the energy produced is accumulated in the myosin heads, which starts a new binding cycle to actin. Z-bands are then pulled toward each other, thus shortening the sarcomere and the I-band, and producing muscle fiber contraction.