Answer:
Step-by-step explanation:
If you divide 33 by 11 it’ll be 3 so we can cross B off, and A too because it’s not a double digit
So that leaves us with C & D.
If we divided 222 and 11 it would leave us with 10 which doesn’t match 11, so that leaves us with D
(Sorry if I didn’t’t explain right )
Given:
W(width) = (6L) - 9
L(length) = L
Equation:
2( [ 6L ] - 9) + 2 (L) = 150
= 12L - 18 + 2L = 150
= 12L + 2L = 150 + 18
=14L = 168
L = 168/14, so the length is 12. Let's check our work.
Width: 6(12) - 9 = 72 - 9 = 63
Length: 12
Since there are two lines of width and two lines of length:
2(12) + 2(63) = 24 + 126, which gives you a perimeter of 150 mm.
Hope this helped.
Answer:
(a) 3 - 2x - 2x² (b) -21
Step-by-step explanation:
given, y +2x² = 3 -2x
make y the subject:
y = 3 - 2x - 2x²
if y = f(x)
then
f(x) = 3 - 2x - 2x²
(b)<u> to find f(3) we need to replace x with 3:</u>
<u />
3 - 2(3) - 2*(3)²
-21
Answer:
a) P(x=3)=0.089
b) P(x≥3)=0.938
c) 1.5 arrivals
Step-by-step explanation:
Let t be the time (in hours), then random variable X is the number of people arriving for treatment at an emergency room.
The variable X is modeled by a Poisson process with a rate parameter of λ=6.
The probability of exactly k arrivals in a particular hour can be written as:

a) The probability that exactly 3 arrivals occur during a particular hour is:

b) The probability that <em>at least</em> 3 people arrive during a particular hour is:
![P(x\geq3)=1-[P(x=0)+P(x=1)+P(x=2)]\\\\\\P(0)=6^{0} \cdot e^{-6}/0!=1*0.0025/1=0.002\\\\P(1)=6^{1} \cdot e^{-6}/1!=6*0.0025/1=0.015\\\\P(2)=6^{2} \cdot e^{-6}/2!=36*0.0025/2=0.045\\\\\\P(x\geq3)=1-[0.002+0.015+0.045]=1-0.062=0.938](https://tex.z-dn.net/?f=P%28x%5Cgeq3%29%3D1-%5BP%28x%3D0%29%2BP%28x%3D1%29%2BP%28x%3D2%29%5D%5C%5C%5C%5C%5C%5CP%280%29%3D6%5E%7B0%7D%20%5Ccdot%20e%5E%7B-6%7D%2F0%21%3D1%2A0.0025%2F1%3D0.002%5C%5C%5C%5CP%281%29%3D6%5E%7B1%7D%20%5Ccdot%20e%5E%7B-6%7D%2F1%21%3D6%2A0.0025%2F1%3D0.015%5C%5C%5C%5CP%282%29%3D6%5E%7B2%7D%20%5Ccdot%20e%5E%7B-6%7D%2F2%21%3D36%2A0.0025%2F2%3D0.045%5C%5C%5C%5C%5C%5CP%28x%5Cgeq3%29%3D1-%5B0.002%2B0.015%2B0.045%5D%3D1-0.062%3D0.938)
c) In this case, t=0.25, so we recalculate the parameter as:

The expected value for a Poisson distribution is equal to its parameter λ, so in this case we expect 1.5 arrivals in a period of 15 minutes.

Answer:
10
Step-by-step explanation:I had this