The average velocity of the whole journey will be total distance covered divided by the total time. It will be approximately equal to 8 m/s. The right answer is option B
<h2>VELOCITY</h2>
Velocity is the distance travelled in a specific direction. While the average velocity of the whole journey will be total distance covered divided by the total time
When driving a Toyota avensis car along a straight road for 16.5km at
50km/h,
The velocity = 50 km/h
Distance = 16.5 km
Use the speed formula to calculate time.
Speed = distance / time
Time = distance / speed
Time = 16.5 / 50
Time = 0.33 s
If over the next 20min, you walked another 2.5km further along the road for a petrol station, Then,
average velocity = Total distance covered divided by total time taken.
Where
The time t = 20/60 = 0.333 h
Total time = 0.33 + 0.3333
Total time = 0.6633333
Total distance = 16.5 + 2.5
Total distance = 19 km
Average velocity = 19 / 0.66333
Average Velocity = 28.64 km/h
Now convert Km/h to m/s
(28.6432 x 1000) / 3600
286432 / 3600
7.956m/s
Therefore, the average velocity of the whole journey from beginning of the drive to the arrival at the filling station will be approximately 8 m/s
Learn more about velocity here: brainly.com/question/6504879
The time taken for the light to travel from the camera to someone standing 7 m away is 2.33×10¯⁸ s
Speed is simply defined as the distance travelled per unit time. Mathematically, it is expressed as:
<h3>Speed = distance / time </h3>
With the above formula, we can obtain the time taken for the light to travel from the camera to someone standing 7 m away. This can be obtained as follow:
Distance = 7 m
Speed of light = 3×10⁸ m/s
<h3>Time =?</h3>
Time = Distance / speed
Time = 7 / 3×10⁸
<h3>Time = 2.33×10¯⁸ s</h3>
Therefore, the time taken for the light to travel from the camera to someone standing 7 m away is 2.33×10¯⁸ s
Learn more: brainly.com/question/14988345
answer:They are too close to the sun!
Explanation:Because Mercury is so close to the Sun and its gravity, it wouldn't be able to hold on to its own moon. Any moon would most likely crash into Mercury or maybe go into orbit around the Sun and eventually get pulled into it.Same with Venus!
Answer:
the second law states that the force F is the product of an object's mass and its acceleration a: F = m * a. For an external applied force, the change in velocity depends on the mass of the object.