Answer:
15.7 m
Explanation:
m = mass of the sled = 125 kg
v₀ = initial speed of the sled = 8.1 m/s
v = final speed of sled = 0 m/s
F = force applied by the brakes in opposite direction of motion = 261
d = stopping distance for the sled
Using work-change in kinetic energy theorem
- F d = (0.5) m (v² - v₀²)
- (261) d = (0.5) (125) (0² - 8.1²)
d = 15.7 m
Great experiment ! Everybody should try it if they can get the equipment.
It demonstrates a lot of things that are very hard to explain in words.
I hope the students remembered to tilt the axis of the globe. If they didn't,
and instead kept it straight up and down, then each city had pretty much
the same amount of bulb-light all the way around, and there were no seasons.
If the axis of the globe was tilted, then City-D had the least variation in
seasons. City-D is only 2° from the equator, so the sun is more direct
there all year around than it is at any of the others.
Answer:
Given:
Thermal Kinetic Energy of an electron, 
= Boltzmann's constant
Temperature, T = 1800 K
Solution:
Now, to calculate the de-Broglie wavelength of the electron,
:

(1)
where
h = Planck's constant = 
= momentum of an electron
= velocity of an electron
= mass of electon
Now,
Kinetic energy of an electron = thermal kinetic energy



(2)
Using eqn (2) in (1):

Now, to calculate the de-Broglie wavelength of proton,
:

(3)
where
= mass of proton
= velocity of an proton
Now,
Kinetic energy of a proton = thermal kinetic energy



(4)
Using eqn (4) in (3):

the answer is True you can convert matter and energy
Answer:
1.84 kJ (kilojoules)
Explanation:
A specific heat of 0.46 J/g Cº means that it takes 0.46 Joules of energy to raise the temperature of 1 gram of iron by 1 Cº.
If we want to heat 50 g of iron from 20° C to 100° C, we can make the following calculation:
Heat = (specific heat)*(mass)*(temp change)
Heat = (0.46 J/g Cº)*(50g)*(100° C - 20° C)
[Note how the units cancel to yield just Joules]
Heat = 1840 Joules, or 1.84 kJ
[Note that the number is positive: Energy is added to the system. If we used cold iron to cool 50g of 100° C water, the temperature change would be (Final - Initial) or (20° C - 100° C). The number is -1.84 kJ: the negative means heat was removed from the system (the iron).