Answer:
d. Relative humidity increases.
Explanation:
The expression of relative humidity in terms of absolute humidity, absolute pressure and saturation pression at measured temperature is:

When temperature decreases, the saturation pressure decreases also and, consequently, relative humidity increases. Therefore, the right answer is option D.
Answer:
4. It is the force of the road on the tires (an external force) that stops the car.
Explanation:
If there is no friction between the road and the tires, the car won't stop.
You can see this, for example, when there is ice on the road. You can still apply the brakes (internal force), but since there is no friction (external force) the car won't stop.
The force of the brakes on the wheels is not what makes the car stop, it is the friction of the road against still tires that makes it stop.
The increase in the average kinetic energy of the ball causes the increase in the temperature of the ball.
Kinetic energy of a particle is directly proportional to its temperature.
A ball initially at rest acquires kinetic energy when an external force is applied to it. As the person strikes the ball with a bat, the ball gains momentum which increases its kinetic energy of the ball.
Temperature on the other hand, is the measure of the average kinetic energy of a particle. Consequently, as the kinetic energy of the ball increases, the temperature of the ball increases as well.
Thus, we can conclude that the increase in the average kinetic energy of the ball causes the increase in the temperature of the ball.
Learn more here: brainly.com/question/18833622
Answer:
n the case of linear motion, the change occurs in the magnitude of the velocity, the direction remaining constant.
In the case of circular motion, the magnitude of the velocity remains constant, the change in its direction occurring.
Explanation:
Velocity is a vector therefore it has magnitude and direction, a change in either of the two is the consequence of an acceleration on the system.
In the case of linear motion, the change occurs in the magnitude of the velocity, the direction remaining constant.
= (v₂-v₁)/Δt
In the case of circular motion, the magnitude of the velocity remains constant, the change in its direction occurring.
= v2/R
In the general case, both the module and the address change
a = Ra ( a_{t}^2 + a_{c}^2)