Answer:
B. It is directly proportional to the source charge.
Explanation:
Gauss's law states that the total (net) flux of an electric field at points on a closed surface is directly proportional to the electric charge enclosed by that surface.
This ultimately implies that, Gauss's law relates the electric field at points on a closed surface to the net charge enclosed by that surface.
This electromagnetism law was formulated in 1835 by famous scientists known as Carl Friedrich Gauss.
Mathematically, Gauss's law is given by this formula;
ϕ = (Q/ϵ0)
Where;
ϕ is the electric flux.
Q represents the total charge in an enclosed surface.
ε0 is the electric constant.
Hence, the statement which is true of the electric field at a distance from the source charge is that it is directly proportional to the source charge.
Answer:
MATERIAL MEDIUM
Explanation:
Wave is a disturbance that travels through a medium and transfer energy from one point to another without causing any permanent displacement of the medium itself. The two forms of wave are the mechanical wave and the electromagnetic waves.
Mechanical wave is a wave with requires MATERIAL MEDIUM for its propagation. This means that before wave can be propagated at times, material medium is needed e.g a ripple tank. A ripple tank is a mechanical device that generates waves using an instrument called stroboscope attached to it. This kind of wave requires an external source before it can propagate compared to electromagnetic waves that does not require material medium for its propagation.
Gain in decibels is given by;
Gain db = 10*log (Po/Pi), where Po = Power output, Pin = Power input
Substituting;
Gain in db = 10 * log (50/5) = 10 db
Answer:
positive
Explanation:
The ball is rolling down with a negative velocity, but the velocity is slowing down. therefore the velocity must increase in order for the ball to slow down.
For example let the ball's initial velocity be -15 m/s. and it is slowing down to let's say -13 m/s. Well this means that it's velocity has increase by 2 m/s. So, its acceleration is positive.