9.81 newtons ......................... sorry it says twenty words
<span>The answer to your question: <span>The
sun emits shortwave radiation, but it is radiated back off of planetary bodies
as longwave radiation. </span></span>
<span>
Explanation: The sun emits shortwave
radiation, wherein it’s extremely hot and is filled with more energy compared
to the radiation emitted by planets. This also comes in the form of light. However, once this becomes absorbed by planetary bodies, it turns into longwave radiation. A good example is the earth’s atmosphere emitting energy
(longwave radiation), which is energy originally coming from the sun (shortwave radiation).</span>
Answer:
a) v = 0.8 m / s
, b)
= 0.777 m / s
, c) ΔK = 0.93 J
Explanation:
This exercise can be solved using the concepts of moment, first let's define the system as formed by the two blocks, so that the forces during the crash have been internal and the moment is conserved.
They give us the mass of block 1 (m1 = 100kg, its kinetic energy (K = 32 J), the mass of block 2 (m2 = 3.00 kg) and that it is at rest (v₀₂ = 0)
Before crash
po = m1 vo1 + m2 vo2
po = m1 vo1
After the crash
= (m1 + m2) 
a) The initial speed of the block of m1 = 100 kg, let's use the kinetic energy
K = ½ m v²
v = √2K / m
v = √ (2 32/100)
v = 0.8 m / s
b) The final speed,
p₀ =
m1 v₀1 = (m1 + m2) 
= m1 / (m1 + m2) v₀₁
The initial velocity is calculated in the previous part v₀₁ = v = 0.8 m / s
= 100 / (3 + 100) 0.8
= 0.777 m / s
c) The change in kinetic energy
Initial K₀ =
K₀ = 32 J
Final
= ½ (m1 + m2)
²
= ½ (3 + 100) 0.777²
= 31.07 J
ΔK =
- K₀
ΔK = 31.07 - 32
ΔK = -0.93 J
As it is a variation it could be given in absolute value
Part D
For this part s has the same initial kinetic energy K = 32 J, but it is block 2 (m2 = 3.00kg) in which it moves
d) we use kinetic energy
v = √ 2K / m2
v = √ (2 32/3)
v = 4.62 m / s
e) the final speed
v₀₂ = v = 4.62 m/s
p₀ = m2 v₀₂
m2 v₀₂ = (m1 + m2) 
= m2 / (m1 + m2) v₀₂
= 3 / (100 + 3) 4.62
= 0.135 m / s
f) variation of kinetic energy
= ½ (m1 + m2)
²
= ½ (3 + 100) 0.135²
= 0.9286 J
ΔK = 0.9286-32
ΔK = 31.06 J
According to Newton’s law of universal gravitation, as we move to higher altitudes, the force of gravity on us decreases and as we gain mass, the force of gravity on us increases both are the true statement.
<u>Explanation: </u>
Newton law of universal gravity extends gravity beyond the earth's surface. This gravity depends on the masses directly and inverse to the distance square between their centers.

Where,
F – Force, G – gravitational constant, M and m – masses in kg, r – distance in meters.
Since force is proportional to the masses of interacting objects. If the mass of any one object increases, gravity between them also gets increased. When moving to higher altitude, force decreases as the distance is inverse proportion to gravity.