Answer: 30.34m/s
Explanation:
The sum of forces in the y direction 0 = N cos 28 - μN sin28 - mg
Sum of forces in the x direction
mv²/r = N sin 28 + μN cos 28
mv²/r = N(sin 28 + μcos 28)
Thus,
mv²/r = mg [(sin 28 + μ cos 28)/(cos 28 - μ sin 28)]
v²/r = g [(sin 28 + μ cos 28)/(cos 28 - μ sin 28)]
v²/36 = 9.8 [(0.4695 + 0.87*0.8829) - (0.8829 - 0.87*0.4695)]
v²/36 = 9.8 [(0.4695 + 0.7681) / (0.8829 - 0.4085)]
v²/36 = 9.8 (1.2376/0.4744)
v²/36 = 9.8 * 2.6088
v²/36 = 25.57
v² = 920.52
v = 30.34m/s
Answer: 361° C
Explanation:
Given
Initial pressure of the gas, P1 = 294 kPa
Final pressure of the gas, P2 = 500 kPa
Initial temperature of the gas, T1 = 100° C = 100 + 273 K = 373 K
Final temperature of the gas, T2 = ?
Let us assume that the gas is an ideal gas, then we use the equation below to solve
T2/T1 = P2/P1
T2 = T1 * (P2/P1)
T2 = (100 + 273) * (500 / 294)
T2 = 373 * (500 / 294)
T2 = 373 * 1.7
T2 = 634 K
T2 = 634 K - 273 K = 361° C
Answer:
The speed of the heavier fragment is 0.335c.
Explanation:
Given that,
Mass of the lighter fragment 
Mass of the heavier fragment 
Speed of lighter fragment = 0.893c
We need to calculate the speed of the heavier fragment
Let v is the speed of the second fragment after decay
Using conservation of relativistic momentum













Hence, The speed of the heavier fragment is 0.335c.
Answer:
b. able to travel through a vacuum.
Explanation:
The most distinguishing factor of an electromagnetic waves is that they are able to travel through a vacuum.
These waves do not require materials in a medium for propagation.
- Electromagnetic waves are formed by the propagation of the electric and magnetic fields.
- They vibrate at an angle of 90° .
- They are unlike like mechanical waves that requires that requires materials in medium for their propagation.