Answer:
23.52 m/s
Explanation:
The following data were obtained from the question:
Time taken (t) to reach the maximum height = 2.4 s
Acceleration due to gravity (g) = 9.8 m/s²
Initial velocity (u) =..?
At the maximum height, the final velocity (v) is zero. Thus, we can obtain how fast the rock (i.e initial velocity)
was thrown as follow:
v = u – gt (since the rock is going against gravity)
0 = u – (9.8 × 2.4)
0 = u – 23.52
Collect like terms
0 + 23.52 = u
u = 23.52 m/s
Therefore, the rock was thrown at a velocity of 23.52 m/s.
10m long is the right answer or 16
Answer:
Explanation:
The general consensus is that it's more “natural” to define distance (meter) and time (second) and as base units, and derive velocity a the ratio between them. ... The general consensus is that it's more “natural” to define distance (meter) and time (second) and as base units, and derive velocity a the ratio between them.
The AU ... Astronomical Unit ... used to be defined as the average distance between the Sun and Earth during the year.
Now it's defined as 149,597,870,700 meters exactly.