find acceleration force divided by Mass
a=f/m
Gravitational force = G ( m1 m2 ) / r²
3 = G ( m1 m2 ) / ( 10 )²x = G ( m1 m2 ) / ( 5 )²We shall divide those two equations:3 / x = 1/100 / 1/25 = 25 / 100 = 1 / 4x · 1 = 3 · 4x = 12Answer:C. 12 N
An energy bar contains of 20grams of carbohydrates and 1gram
is equal to 17 KJ. If the energy bar was his only fuel the total energy
available is equal to (17,000 x 20) = 340,000j. Estimate KJ per hour is equal
to 1539KJ, it has Time equal to (340,000/1539,000) is equal to 0.2209 hour and
his Distance is equal to (5,000 x .2209) = 1.1045km.
Answer:
0.78 m
Explanation:
By the conservation of energy, the energy that they gain from potential energy, must be equal to the kinetic energy. So, for Adolf:
Ep = Ek
ma*g*ha = ma*va²/2
Where ma is the mass of Adolf, g is the gravity acceleration (10 m/s²), ha is the height that he reached, and va is the velocity. So:
100*10*0.51 = 100*va²/2
50va² = 510
va² = 10.2
va = √10.2
va = 3.20 m/s
Before the push, both of them are in rest, so the momentum must be 0. The system is conservative, so the momentum after the push must be equal to the momentum before the push:
ma*va + me*ve = 0, where me and ve are the mass and velocity of Ed. So:
100*3.20 + 81ve = 0
81ve = 320
ve = 3.95 m/s
By the conservation of energy for Ed:
me*g*he = me*ve²/2
81*10*he = 81*(3.95)²/2
810he = 631.90
he = 0.78 m
about 5 watts (5W) of power