Answer:
1. 0.574 kJ/kg
2. 315.7 MW
Explanation:
1. The mechanical energy per unit mass of the river is given by:


Where:
Ek is the kinetic energy
Ep is the potential energy
v is the speed of the river = 3 m/s
g is the gravity = 9.81 m/s²
h is the height = 58 m

Hence, the total mechanical energy of the river is 0.574 kJ/kg.
2. The power generation potential on the river is:

Therefore, the power generation potential of the entire river is 315.7 MW.
I hope it helps you!
-- As far as we know, the forces on the wheelbarrow are balanced.
-- That tells us that the net force on the wheelbarrow is zero, just
as if there were no forces acting on it at all.
-- That tells us that the wheelbarrow's acceleration is zero ... its
speed and direction of motion are not changing.
-- That tells us that the wheelbarrow is moving in a straight line
at a constant speed. It's very possible that relative to us, the speed
may be zero, but we can't tell that from the given information.
This is true!!
Good luck hope this helped!
Answer:
0.34 m
Explanation:
From the question,
v = λf................ Equation 1
Where v = speed of sound, f = frequency, λ = Wave length
Make λ the subject of the equation
λ = v/f............... Equation 2
Given: v = 340 m/s, f = 500 Hz.
Substitute these values into equation 2
λ = 340/500
λ = 0.68 m
But, the distance between a point of rarefaction and the next compression point, in the resulting sound is half wave length
Therefore,
λ/2 = 0.68/2
λ/2 = 0.34 m
Hence, the distance between a point of rarefaction and the next compression point, in the resulting sound is 0.34 m
To solve this problem we use an amplification formula for divergent lenses

Where:
i: distance of the image to the lens
o: Distance from the object to the lens
h = height of the object
h '= height of the image


h '= 6 mm
The height is 6 mm