From the calculations, the pH of the buffer is 3.1.
<h3>What is the pH of the buffer solution?</h3>
The Henderson-Hasselbach equation comes in handy when we deal with the pH of a buffer solution. From that equation;
pH = pKa + log[(salt/acid]
Amount of the salt = 25/1000 * 0.50 M = 0.0125 moles
Amount of the acid = 75/1000 * 1.00 M = 0.075 moles
Total volume = ( 25 + 75)/1000 = 0.1 L
Molarity of salt = 0.0125 moles/0.1 L = 0.125 M
Molarity of the acid = 0.075 moles/0.1 L = 0.75 M
Given that the pKa of lactic acid is 3.86
pH = 3.86 + log( 0.125/0.75)
pH = 3.1
Learn more about pH:brainly.com/question/5102027
#SPJ1
Answer:
The water lost is 36% of the total mass of the hydrate
Explanation:
<u>Step 1:</u> Data given
Molar mass of CuSO4*5H2O = 250 g/mol
Molar mass of CuSO4 = 160 g/mol
<u>Step 2:</u> Calculate mass of water lost
Mass of water lost = 250 - 160 = 90 grams
<u>Step 3:</u> Calculate % water
% water = (mass water / total mass of hydrate)*100 %
% water = (90 grams / 250 grams )*100% = 36 %
We can control this by the following equation
The hydrate has 5 moles of H2O
5*18. = 90 grams
(90/250)*100% = 36%
(160/250)*100% = 64 %
The water lost is 36% of the total mass of the hydrate
Lithium is atomic number 3, so it has valency 1
While, Bromine is atomic number 35, and has valency 1
Lithium has an extra electron while Bromine need an electron, since they both need and have one electron, the form
LiBr (Lithium Bromide) where Li is +ve charged and Br is -ve charged
Happy to help :)
Answer:
I don't know the ans please search on the Google you will get
And don't forget to mark me as brainlest please guys and follow me back please please please please please
And I will help you tooooooooooooooooo and follow u back if you follow me
Answer:
The sum of each elementary step in a reaction mechanism must yield the overall reaction equation. From the rate law of the rate-determining step it must agree with the experimentally determined rate law. The rate-determining step is the slowest step in a reaction mechanism. Because it is the slowest, it determines the rate of the overall reaction.
Explanation: