Answer:
It's ferric oxide Fe2O3
Explanation:
I don't say u must have to mark my ans as brainliest but if it has really helped u plz don't forget to thank me plz...
<u>Answer:</u> The amount of Iodine-131 remain after 39 days is 0.278 grams
<u>Explanation:</u>
The equation used to calculate rate constant from given half life for first order kinetics:

where,
= half life of the reaction = 8.04 days
Putting values in above equation, we get:

Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 
t = time taken for decay process = 39 days
= initial amount of the sample = 8.0 grams
[A] = amount left after decay process = ?
Putting values in above equation, we get:
![0.0862=\frac{2.303}{39}\log\frac{8.0}{[A]}](https://tex.z-dn.net/?f=0.0862%3D%5Cfrac%7B2.303%7D%7B39%7D%5Clog%5Cfrac%7B8.0%7D%7B%5BA%5D%7D)
![[A]=0.278g](https://tex.z-dn.net/?f=%5BA%5D%3D0.278g)
Hence, the amount of Iodine-131 remain after 39 days is 0.278 grams
Answer:
Water, in either liquid or solid form, is often a key agent of mechanical weathering. For instance, liquid water can seep into cracks and crevices in rock. If temperatures drop low enough, the water will freeze. ... This specific process (the freeze-thaw cycle) is called frost weathering or cryofracturing.