Answer:
Trinomial
degree of polynomial:2nd degree - Quadratic
Step-by-step explanation:
Answer:
800. Here's why:
Step-by-step explanation:
This indicats that 440 students make up 55% of the 6th grade population. We can write this as
55/440.
We also know that 'x' total students make up 100% of the 6th-grade population, so we can write this as
100/x.
55/440 must be equal to 100/x. When cross multiplied, it becomes 50x=44000. If we divided each side by 50, we'll find that x=880. Therefore, there are 800 6th graders
Answer:
C.
and
Step-by-step explanation:
You have the quadratic function
to find the solutions for this equation we are going to use Bhaskara's Formula.
For the quadratic functions
with
the Bhaskara's Formula is:
![x_1=\frac{-b+\sqrt{b^2-4.a.c} }{2.a}](https://tex.z-dn.net/?f=x_1%3D%5Cfrac%7B-b%2B%5Csqrt%7Bb%5E2-4.a.c%7D%20%7D%7B2.a%7D)
![x_2=\frac{-b-\sqrt{b^2-4.a.c} }{2.a}](https://tex.z-dn.net/?f=x_2%3D%5Cfrac%7B-b-%5Csqrt%7Bb%5E2-4.a.c%7D%20%7D%7B2.a%7D)
It usually has two solutions.
Then we have
where a=2, b=-1 and c=1. Applying the formula:
![x_1=\frac{-b+\sqrt{b^2-4.a.c} }{2.a}\\\\x_1=\frac{-(-1)+\sqrt{(-1)^2-4.2.1} }{2.2}\\\\x_1=\frac{1+\sqrt{1-8} }{4}\\\\x_1=\frac{1+\sqrt{-7} }{4}\\\\x_1=\frac{1+\sqrt{(-1).7} }{4}\\x_1=\frac{1+\sqrt{-1}.\sqrt{7}}{4}](https://tex.z-dn.net/?f=x_1%3D%5Cfrac%7B-b%2B%5Csqrt%7Bb%5E2-4.a.c%7D%20%7D%7B2.a%7D%5C%5C%5C%5Cx_1%3D%5Cfrac%7B-%28-1%29%2B%5Csqrt%7B%28-1%29%5E2-4.2.1%7D%20%7D%7B2.2%7D%5C%5C%5C%5Cx_1%3D%5Cfrac%7B1%2B%5Csqrt%7B1-8%7D%20%7D%7B4%7D%5C%5C%5C%5Cx_1%3D%5Cfrac%7B1%2B%5Csqrt%7B-7%7D%20%7D%7B4%7D%5C%5C%5C%5Cx_1%3D%5Cfrac%7B1%2B%5Csqrt%7B%28-1%29.7%7D%20%7D%7B4%7D%5C%5Cx_1%3D%5Cfrac%7B1%2B%5Csqrt%7B-1%7D.%5Csqrt%7B7%7D%7D%7B4%7D)
Observation: ![\sqrt{-1}=i](https://tex.z-dn.net/?f=%5Csqrt%7B-1%7D%3Di)
![x_1=\frac{1+\sqrt{-1}.\sqrt{7}}{4}\\\\x_1=\frac{1+i.\sqrt{7}}{4}\\\\x_1=\frac{1}{4}+(\frac{\sqrt{7}}{4})i](https://tex.z-dn.net/?f=x_1%3D%5Cfrac%7B1%2B%5Csqrt%7B-1%7D.%5Csqrt%7B7%7D%7D%7B4%7D%5C%5C%5C%5Cx_1%3D%5Cfrac%7B1%2Bi.%5Csqrt%7B7%7D%7D%7B4%7D%5C%5C%5C%5Cx_1%3D%5Cfrac%7B1%7D%7B4%7D%2B%28%5Cfrac%7B%5Csqrt%7B7%7D%7D%7B4%7D%29i)
And,
![x_2=\frac{-b-\sqrt{b^2-4.a.c} }{2.a}\\\\x_2=\frac{-(-1)-\sqrt{(-1)^2-4.2.1} }{2.2}\\\\x_2=\frac{1-i.\sqrt{7} }{4}\\\\x_2=\frac{1}{4}-(\frac{\sqrt{7}}{4})i](https://tex.z-dn.net/?f=x_2%3D%5Cfrac%7B-b-%5Csqrt%7Bb%5E2-4.a.c%7D%20%7D%7B2.a%7D%5C%5C%5C%5Cx_2%3D%5Cfrac%7B-%28-1%29-%5Csqrt%7B%28-1%29%5E2-4.2.1%7D%20%7D%7B2.2%7D%5C%5C%5C%5Cx_2%3D%5Cfrac%7B1-i.%5Csqrt%7B7%7D%20%7D%7B4%7D%5C%5C%5C%5Cx_2%3D%5Cfrac%7B1%7D%7B4%7D-%28%5Cfrac%7B%5Csqrt%7B7%7D%7D%7B4%7D%29i)
Then the correct answer is option C.
and
Answer:
A: x‒axis: minutes in increments of 5; y-axis: temperature in increments of 1
Step-by-step explanation:
Let the x-axis represent the minutes
Let the y-axis represent the temperature
Now, from the values given us in minutes, we can see that the difference between the values are Increasing at constant rate of 5 minutes .
Thus, minutes increment on the x-axis is 5.
Now,for the y-axis, the increment is not constant as it fluctuates.
Thus, we cannot use 5 like we did for the x-axis. Rather, the most appropriate temperature increment to be used on this y-axis for ease of locating the points will be 1.
Answer:
k'=3,-6
l'=3,1
m'=8,1
n'=8,-6
Step-by-step explanation: