Answer:
125/6(In(x-25)) - 5/6(In(x+5))+C
Step-by-step explanation:
∫x2/x1−20x2−125dx
Should be
∫x²/(x²−20x−125)dx
First of all let's factorize the denominator.
x²−20x−125= x²+5x-25x-125
x²−20x−125= x(x+5) -25(x+5)
x²−20x−125= (x-25)(x+5)
∫x²/(x²−20x−125)dx= ∫x²/((x-25)(x+5))dx
x²/(x²−20x−125) =x²/((x-25)(x+5))
x²/((x-25)(x+5))= a/(x-25) +b/(x+5)
x²/= a(x+5) + b(x-25)
Let x=25
625 = a30
a= 625/30
a= 125/6
Let x= -5
25 = -30b
b= 25/-30
b= -5/6
x²/((x-25)(x+5))= 125/6(x-25) -5/6(x+5)
∫x²/(x²−20x−125)dx
=∫125/6(x-25) -∫5/6(x+5) Dx
= 125/6(In(x-25)) - 5/6(In(x+5))+C
If the perimeter equals 30 and the length is twice the width, then the length is equal to 20 and the width is equal to 10.
Answer:
============================
<h2>Given expression:</h2>
<h2>Simplify it in steps:</h2>
<h3>Step 1</h3>
Bring both fractions into common denominator:
<h3>Step 2</h3>
Simplify:
<h3>Step 3</h3>
Compare the result with given expression to get:
Answer:
58
Step-by-step explanation:
360 degrees in a whole circle
360-294=66
66-26=40
x-18=40
40+18=58