1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IgorC [24]
3 years ago
5

What is one layer of bone

Physics
2 answers:
devlian [24]3 years ago
8 0

Answer:

The outer surface of bone is called the periosteum (say: pare-ee-OSS-tee-um). It's a thin, dense membrane that contains nerves and blood vessels that nourish the bone. The next layer is made up of compact bone. This part is smooth and very hard.

Pie3 years ago
6 0

Periosteum. anatomy. Periosteum, dense fibrous membrane covering the surfaces of bones, consisting of an outer fibrous layer and an inner cellular layer (cambium). The outer layer is composed mostly of collagen and contains nerve fibres that cause pain when the tissue is damaged.Answer:

Explanation:

You might be interested in
transmission electron microscopes that use high-energy electrons accelerated over a range from 40.0 to 100 kv are employed in ma
Gekata [30.6K]

The spatial limitations in Picometer for the given range of electrons would be around 50 picometers.

What is a transmission electron microscope?

A transmission electron microscope (TEM) is a type of microscope that uses a beam of high-energy electrons to produce detailed images of the structure of materials at the atomic or molecular scale. TEMs work by passing a focused beam of electrons through a thin sample and collecting the transmitted electrons on a fluorescent screen or an electronic detector. The interaction of the sample with the electrons results in the formation of an image that can be magnified and displayed on a computer monitor. TEMs are widely used in the fields of materials science, biology, and nanotechnology and can provide information about the structure, composition, and properties of materials with a high level and resolution.

According to the problem:

The spatial resolution of a transmission electron microscope (TEM) is determined by the size of the electron probe, which is directly related to the energy of the electrons. The higher the energy of the electrons is, the smaller the size of the probe is and the higher the spatial resolution.

At the lower end of the energy range of 40.0 kV, the spatial resolution of the TEM would be on the order of hundreds of nanometers. At the higher end of the range (100 kV), the spatial resolution would be on the order of tens of nanometers.

In general, TEMs with electron energy in the range of 40-100 kV are capable of resolving details down to around 50 picometers (pm). However, the actual spatial resolution will depend on various factors, such as the quality of the electron optics, the stability of the electron beam, and the sample preparation.

It's worth noting that TEMs with even higher electron energies (up to several hundred kV) are available, which can achieve spatial resolutions down to the sub-angstrom level (less than 0.1 pm). However, these instruments are much more expensive and complex to operate than TEMs with lower electron energies.

To know more about de broglie wavelength, visit:

brainly.com/question/17295250

#SPJ4

7 0
1 year ago
THIS MARCIN
nekit [7.7K]

Answer:

The image is formed at a ‘distance of 16.66 cm’ away from the lens as a diminished image of height 3.332 cm. The image formed is a real image.

Solution:

The given quantities are

Height of the object h = 5 cm

Object distance u = -25 cm

Focal length f = 10 cm

The object distance is the distance between the object position and the lens position. In order to find the position, size and nature of the image formed, we need to find the ‘image distance’ and ‘image height’.

The image distance is the distance between the position of convex lens and the position where the image is formed.

We know that the ‘focal length’ of a convex lens can be found using the below formula

1f=1v−1u\frac{1}{f}=\frac{1}{v}-\frac{1}{u}

f

1

=

v

1

−

u

1

Here f is the focal length, v is the image distance which is known to us and u is the object distance.

The image height can be derived from the magnification equation, we know that

Magnification=h′h=vu\text {Magnification}=\frac{h^{\prime}}{h}=\frac{v}{u}Magnification=

h

h

′

=

u

v

Thus,

h′h=vu\frac{h^{\prime}}{h}=\frac{v}{u}

h

h

′

=

u

v

First consider the focal length equation to find the image distance and then we can find the image height from magnification relation. So,

1f=1v−1(−25)\frac{1}{f}=\frac{1}{v}-\frac{1}{(-25)}

f

1

=

v

1

−

(−25)

1

1v=1f+1(−25)=110−125\frac{1}{v}=\frac{1}{f}+\frac{1}{(-25)}=\frac{1}{10}-\frac{1}{25}

v

1

=

f

1

+

(−25)

1

=

10

1

−

25

1

1v=25−10250=15250\frac{1}{v}=\frac{25-10}{250}=\frac{15}{250}

v

1

=

250

25−10

=

250

15

v=25015=503=16.66 cmv=\frac{250}{15}=\frac{50}{3}=16.66\ \mathrm{cm}v=

15

250

=

3

50

=16.66 cm

Then using the magnification relation, we can get the image height as follows

h′5=−16.6625\frac{h^{\prime}}{5}=-\frac{16.66}{25}

5

h

′

=−

25

16.66

So, the image height will be

h′=−5×16.6625=−3.332 cmh^{\prime}=-5 \times \frac{16.66}{25}=-3.332\ \mathrm{cm}h

′

=−5×

25

16.66

=−3.332 cm

Thus the image is formed at a distance of 16.66 cm away from the lens as a diminished image of height 3.332 cm. The image formed is a ‘real image’.

5 0
2 years ago
The continuous submarine mountain range which winds through all the oceans is called the mid-ocean
Artist 52 [7]
The continuous submarine mountain range which winds through all the oceans is called the mid-ocean <u>ridge.
</u>It is a form of a mountain which is found underwater, and it appeared there due to the movements of tectonic plates. It is responsible for the creation of new seafloor, meaning that the ground underwater changes constantly with the formation of these ridges. <u>
</u>
5 0
3 years ago
What is the period of a wave with a speed of 20.0 m/s and a frequency of 10.0 Hz?
Delvig [45]

<em>im confused hold on imma send you a link to the answer</em>Explanation:

4 0
3 years ago
List the laws of solid friction​
kumpel [21]

Answer:

The force of friction acts in opposite direction in which the surface is having tendency to move.

The force of friction is equal to force applied to surfaces, so long as surface is at rest.

Explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • The idea that life could spring from nonliving matter is called?
    11·1 answer
  • A 2-kg object is moving horizontally with a speed of 4 m/s. How much net force is required to keep the object moving at this spe
    9·1 answer
  • If are spaced closely together on the map,there is a drastic temperature change over the distance
    13·2 answers
  • If the speed of light in a vacuum is twice that of the speed of light in a given material, what is the index of infraction for t
    8·2 answers
  • How far can a person run in 15 seconds if she runs at an average speed of 160 cm/s? State your answer in meters.
    10·1 answer
  • A 0.45 kg rock is projected from the edge of the top of a building with an initial velocity of 11.1m/s at an angle of 50 degrees
    14·1 answer
  • Two identical charges q placed 2.0 mapart exert forces of magnitude 4.0 N on each other What is the value of the charge q? a) q
    12·1 answer
  • A compact disc stores music in a coded pattern of tinypits 10^(-7) m deep. the pits are arranged in a track thenspirals outward
    8·1 answer
  • When the C4 key on a piano keyboard is pressed, a string inside the piano is struck by a hammer and begins vibrating back and fo
    6·1 answer
  • Most of an atom is empty space.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!