1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lorico [155]
3 years ago
11

You are asked to determine the density of a liquid. What lab equipment is most helpful to find density of the liquid?

Physics
2 answers:
crimeas [40]3 years ago
7 0
The answer is D, the graduated cylinder and a triple beam-balance
AnnyKZ [126]3 years ago
6 0
D. The graduated cylinder is used to find the volume, and triple beam balance is used to find the mass.
You might be interested in
If railroad tracks were built over the boundary of two plates what would happen to the railroad tracks as the plates moved
Oliga [24]
The railroad tracks will move with the plate boundaries
6 0
3 years ago
Una bola de 1 kg gira alrededor de un circulovrtical en el extremo de un cuerda. El otro extremo de la cuerda esta fijo en el ce
Vladimir79 [104]

Answer:

La diferencia entre las tensiones máxima y mínima es de 19.614 newtons.

Explanation:

Puesto que la bola gira en un círculo vertical, existe claramente una diferencia entre las tensiones debido a la influencia de la gravedad y la tensión que resulta de la aceleración centrípeta experimentada por la masa. La máxima tensión ocurre cuando la bola se encuentra en el nadir (o la sima) del trayecto circular, la cual se describe por la Segunda Ley de Newton:

T_{max} - m\cdot g = m\cdot \frac{v^{2}}{L}

En cambio, la mínima tensión aparece cuando la bola se encuentra en el cénit (o la cima) del trayecto circular, descrita por la misma ley de Newton:

T_{min} + m\cdot g = m\cdot \frac{v^{2}}{L}

Donde:

T_{min}, T_{max} - Tensiones mínima y máxima, medidas en newtons.

m - Masa de la bola, medida en kilogramos.

g - Constante gravitacional, medida en metros por segundo al cuadrado.

L - Distancia con respecto al eje de rotación, medida en metros.

v - Rapidez tangencial, medido en metros por segundo.

Se elimina la aceleración centrípeta de ambas expresiones por igualación:

T_{min} + m\cdot g = T_{max} - m\cdot g

Ahora, la diferencia entre las tensiones máxima y mínima es:

T_{max} - T_{min} = 2\cdot m \cdot g

Si m = 1\,kg y g = 9.807\,\frac{m}{s^{2}}, entonces:

T_{max} - T_{min} = 2\cdot (1\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)

T_{max}-T_{min} = 19.614\,N

La diferencia entre las tensiones máxima y mínima es de 19.614 newtons.

5 0
3 years ago
A dog leaps horizontally off a 70 m cliff with a speed of 6 m/s, how far from the base will the dog land?
iris [78.8K]

Answer:

\Delta x=22.67786838m

Explanation:

Let's use projectile motion equations. First of all we need to find the travel time. So we are going to use the next equation:

y-y_0=v_o*sin(\theta)*t-\frac{1}{2}*t^2 (1)

Where:

y=Final\hspace{3}position\hspace{3}at\hspace{3}y-axis

y_o=Initial\hspace{3}position\hspace{3}at\hspace{3}y-axis

v_o=initial\hspace{3}velocity

t=travel\hspace{3}time

g=gravity\hspace{3}constant

\theta=Initial\hspace{3}launch\hspace{3}angle

In this case:

\theta=0

Because the dog jumps horizontally

Let's asume the gravity constant as:

g=9.8

y=0

Because when the dog reach the base the height is 0

y_o=70

v_o=6

Now let's replace the data in (1)

y_o-\frac{1}{2} *(9.8)*t^2+70

Isolating t:

t=\pm\sqrt{\frac{2*70}{9.8} } =3.77964473

Finally let's find the horizontal displacement using this equation:

\Delta x=v_o*cos(\theta)*t

Replacing the data:

\Delta x=6*1*3.77964473=22.67786838m

8 0
2 years ago
A circular conical reservoir has depth 20 feet and radius of the top 10 feet. water is leaking out so that the surface is fallin
levacccp [35]

As per given condition we know that vertex angle of the cone is given as

tan\theta = \frac{R}{H}

so here we can say that vertex angle will remain constant

so here

\frac{r}{y} = \frac{R}{H}

\frac{r}{8} = \frac{10}{20}

r = 4 feet

now for the volume we can say

V = \frac{1}{3}\pi r^2 y

also we can say

r = \frac{y}{2}

so here we will have

V = \frac{1}{3}\pi (\frac{y}{2})^2y = \frac{1}{12}\pi y^3

now for volume flow rate

Q = \frac{dV}{dt} = \frac{3}{12}\pi y^2\frac{dy}{dt}

Q = \frac{1}{4}\pi y^2 v_y

now plug in all data

Q = \frac{1}{4} \pi (8)^2 (12) ft^3/h

Q = 603.2 ft^3/h

4 0
2 years ago
A boat traveling at a velocity of 20 m/s leaves island heading east . The boat slows to rest at a rate of 1.5 m/s2 How far away
ioda

The boat's initial velocity is:

v_0 = 20 m/s

While the boat's acceleration is

a=-1.5 m/s^2

with a negative sign, since the boat is slowing down, so it is a deceleration. The distance traveled by the boat until it comes to a stop can be found by using the following equation:

v_f^2 -v_0^2 = 2aS

where vf=0 is the final velocity of the boat and S is the distance covered. Re-arranging the formula, we can find S:

S=\frac{-v_0^2}{2a}=\frac{-(20 m/s)^2}{2(-1.5 m/s^2)}=133.3 m

7 0
2 years ago
Other questions:
  • A spring with a force constant of 5.3 n/m has a relaxed length of 2.60 m. when a mass is attached to the end of the spring and a
    15·1 answer
  • Which of the following elements are most likely to have similar chemical properties?
    7·1 answer
  • What is the value of the activation energy of the uncatalyzed reaction in reverse?
    12·1 answer
  • A projectile is launched from the ground at an angle of 60o above the horizontal. At what point in its trajectory does it have t
    8·1 answer
  • Why can some electric appliances be immersed in water without damage?
    7·2 answers
  • Help please! This question is driving me crazy
    5·1 answer
  • What is the current in the 60.0 resistor
    15·2 answers
  • Which of these experiments would make use of quantitative data?
    8·2 answers
  • A 240 V circuit has 20 A flowing through it. How much power is it using?
    8·1 answer
  • Which of the following helps in designing an attractive 3-D craft?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!