Incomplete combustion<span> occurs when the supply of air or oxygen is poor. Water is still produced, but carbon monoxide and carbon are produced instead of carbon dioxide</span>
In ionic bonds, one atom gives one or more electrons to another atom so both can get closer to 8 valence electrons. Example: In potassium chloride (KCl), Potassium gives up one valence electron to chlorine, so that the outer shell of potassium has 8 valence electrons. This happens only between metals and nonmetals.
In covalent bonds, atoms share their electrons to reach 8 valence electrons. Example: In water (H2O), Oxygen shares one valence electron with one atom of hydrogen, and another valence electron with another atom of hydrogen. Oxygen now has 8 (4 unshared + 2 of its own + 1 from hydrogen + 1 from hydrogen), and each hydrogen has 2 valence electrons: one of its own and one from oxygen [ note that hydrogen only needs 2 valence electrons to be complete instead of 8].
In metallic bonds between metals, the valence electrons move much more freely than in other bonds. This free characteristic makes metals how they are: ductile, malleable, sectile, conductive, etc.
Answer:
The answer should be Skeptical
Answer:
Kc = [CH₄] / [H₂]²
Kp = [CH₄] / [H₂]² * (0.082*T)^-1
Explanation:
Equilibrium constant, Kc, is defined as the ratio of the concentrations of the products over the reactants. Also, each concentration of product of reactant is powered to its coefficient.
<em>Pure solids and liquids are not taken into account in an equilibrium</em>
Thus, for the reaction:
C(s)+ 2H₂(g) ⇌ CH₄(g)
Equilibrium constant is:
<h3>Kc = [CH₄] / [H₂]²</h3>
Now, using the formula:
Kp = Kc* (RT)^Δn
<em>Where R is gas constant (0.082atmL/molK), T is the temperature of the reaction and Δn is difference in coefficients of gas products - coefficients of gas reactants (1 - 2= -1)</em>
Replacing:
<h3>Kp = [CH₄] / [H₂]² * (0.082*T)^-1</h3>
<em />
Answer:
Al₄O₅
Explanation:
The key at the bottom tells us the blue spheres are oxygen atoms and the red spheres are aluminum atoms. By counting, there are 4 aluminum atoms and 5 oxygen atoms. Therefore, the formula is Al₄O₅.