Answer:
B. Decreasing the pressure applied to the gas molecules
Explanation:
According to Boyle's Law, the pressure of the gas is inversely proportional to the volume of the gas. So, the option B is correctly implied to it.
Other values such as Temperature, Number of molecules are inversely proportional to the volume of the gas.
Size of the gas molecules is negligible as compared to volume.
The way how <span>data is not actually obtained from the experiment represented in a line graph is defnitely that </span><span>a colored line with a broken line. It is a well known fact that to obtain the actual data from the experiment you there should be plotted points on the line. Hope it will help you! Regards.</span>
<span>There are more than 550 active
volcanoes in the world, almost all of which are located at convergent
tectonic plate boundaries. This includes all of the volcanoes in the
Pacific Ring of Fire, such as Japan's Mount Fuji, as well as Mount Saint
Helens, Popocafepetl in Mexico and Azul in the Andes Range.</span>
If sodium is burned in chlorine fuel, a compound is formed that dissolves in water. the solution be: Bright yellow mild
Chlorine is a yellow-green gas at room temperature. Chlorine has a smelly, annoying scent similar to bleach that is detectable at low concentrations. The density of chlorine gasoline is about 2.5 times extra than air, so one can reason it to initially stay near the floor in regions with little air movement.
Chlorine gasoline can be recognized by using its smelly, anxious smell, which is like the scent of bleach. The sturdy scent may additionally provide a good enough caution to human beings that they have been uncovered. Chlorine fuel appears to be yellow-green in color. Concentrations of approximately 400 ppm and past are commonly fatal over a half-hour, and at 1,000 ppm and above, fatality ensues within only some mins. A spectrum of scientific findings can be present in those uncovered to excessive tiers of chlorine.
Learn more about Chlorine here:
brainly.com/question/25190915
#SPJ1
Answer:
E = 29.7× 10⁻²⁰ j
Explanation:
Given data;
Frequency of light = 4.48 × 10¹⁴ Hz
Energy of photon = ?
Solution:
Formula:
E = h.f
E = energy of photon
h = planck's constant
f = frequency
E = h.f
E = 6.63 × 10⁻³⁴ Kg.m² /s × 4.48 × 10¹⁴ s⁻¹
E = 29.7× 10⁻²⁰ Kg.m²/s²
Kg.m²/s² = j
E = 29.7× 10⁻²⁰ j