Answer:
The required answer as a product with a whole number greater than 1 will be:
![21c+24=3\left(7c+8\right)](https://tex.z-dn.net/?f=21c%2B24%3D3%5Cleft%287c%2B8%5Cright%29)
Step-by-step explanation:
Given the expression
![21c+24](https://tex.z-dn.net/?f=21c%2B24)
Determining the factor
![21c+24](https://tex.z-dn.net/?f=21c%2B24)
so the expression becomes
![21c+24=3\cdot \:\:7c+3\cdot \:\:8](https://tex.z-dn.net/?f=21c%2B24%3D3%5Ccdot%20%5C%3A%5C%3A7c%2B3%5Ccdot%20%5C%3A%5C%3A8)
Factor out the common term 3
![=3\left(7c+8\right)](https://tex.z-dn.net/?f=%3D3%5Cleft%287c%2B8%5Cright%29)
Therefore, the required answer as a product with a whole number greater than 1 will be:
![21c+24=3\left(7c+8\right)](https://tex.z-dn.net/?f=21c%2B24%3D3%5Cleft%287c%2B8%5Cright%29)
The answer is false your welcome
Answer:
10:30 A.M
Step-by-step explanation:
Given : Diameter of the right circular cone ==> 8 cm
It means : The Radius of the right circular cone is 4 cm (as Radius is half of the Diameter)
Given : Volume of the right circular cone ==> 48π cm³
We know that :
![\bigstar \ \ \boxed{\textsf{Volume of a right circular cone is given by : $\pi r^2\dfrac{h}{3}$}}](https://tex.z-dn.net/?f=%5Cbigstar%20%5C%20%5C%20%5Cboxed%7B%5Ctextsf%7BVolume%20of%20a%20right%20circular%20cone%20is%20given%20by%20%3A%20%24%5Cpi%20r%5E2%5Cdfrac%7Bh%7D%7B3%7D%24%7D%7D)
where : r is the radius of the circular cross-section.
h is the height of the right circular cone.
Substituting the respective values in the formula, we get :
![\mathsf{\implies \pi \times (4)^2 \times \dfrac{h}{3} = 48\pi}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cimplies%20%5Cpi%20%5Ctimes%20%284%29%5E2%20%5Ctimes%20%5Cdfrac%7Bh%7D%7B3%7D%20%3D%2048%5Cpi%7D)
![\mathsf{\implies 16 \times \dfrac{h}{3} = 48}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cimplies%2016%20%5Ctimes%20%5Cdfrac%7Bh%7D%7B3%7D%20%3D%2048%7D)
![\mathsf{\implies \dfrac{h}{3} = 3}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cimplies%20%5Cdfrac%7Bh%7D%7B3%7D%20%3D%203%7D)
![\implies \boxed{\mathsf{h= 9 \ cm}}](https://tex.z-dn.net/?f=%5Cimplies%20%5Cboxed%7B%5Cmathsf%7Bh%3D%209%20%5C%20cm%7D%7D)
<u>Answer</u> : Height of the given right circular cone is 9 cm