Answer:
The answer to your question is 88.7 ml
Explanation:
Data
Volume = ?
Concentration of NaOH = 0.142 M
Volume of H₂C₄H₄O₆ = 21.4 ml
Concentration of H₂C₄H₄O₆ = 0.294 M
Balanced chemical reaction
2 NaOH + H₂C₄H₄O₆ ⇒ Na₂C₄H₄O₆ + 2H₂O
1.- Calculate the moles of H₂C₄H₄O₆
Molarity = moles/volume
Solve for moles
moles = Molarity x volume
Substitution
moles = 0.294 x 21.4/1000
Result
moles = 0.0063
2.- Use proportions to calculate the moles of NaOH
2 moles of NaOH ------------------ 1 moles of H₂C₄H₄O₆
x ------------------ 0.0063 moles
x = (0.0063 x 2) / 1
x = 0.0126 moles of NaOH
3.- Calculate the volume of NaOH
Molarity = moles / volume
Solve for volume
Volume = moles/Molarity
Substitution
Volume = 0.0126/0.142
Result
Volume = 0.088 L or 88.7 ml
We assume that this gas is an ideal gas. We use the ideal gas equation to calculate the amount of the gas in moles. It is expressed as:
PV = nRT
(672) (1/760) (36.52) = n (0.08206) ( 68 +273.15)
n = 1.15 mol of gas
Hope this answers the question. Have a nice day.
S2F10, FE3N2, S7O2, NaCO3, Al2O3, PC13, and CO2. Hope this helps
Answer: 77.4 mL
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is:
where,
= initial pressure of dry gas = (760 - 17.5) mmHg= 742.5 mm Hg
= final pressure of dry gas at STP = 760 mm Hg
= initial volume of dry gas = 85.0 mL
= final volume of dry gas at STP = ?
= initial temperature of dry gas =
= final temperature of dry gas at STP =
Now put all the given values in the above equation, we get the final volume of wet gas at STP
Volume of dry gas at STP is 77.4 mL.
Glass is not a living organism, so it is <u>abiotic</u>.