Answer:
It would probably be, something that can take up moisture to test it.
Explanation:
(to see if it can evaporate)
The atomic mass of the element would simply be equal to
the sum of the weighted average of each isotope, that is:
atomic mass = 59.015 amu * 0.717 + 62.011 amu * (1 – 0.717)
<span>atomic mass = 59.863 amu</span>
Answer:
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjkwv-cqrjnAhVCheAKHWaFBBgQFjAAegQICBAB&url=https%3A%2F%2Fwww.acs.org%2Fcontent%2Fdam%2Facsorg%2Feducation%2Fresources%2Fk-8%2Finquiryinaction%2Fstudent-activity-sheets%2Fgrade-5%2Fchapter-3%2Flesson-3.3-forming-a-precipitate.pdf&usg=AOvVaw1fT7fpXG9PNWroM87puvgQ
Explanation:
that has the answers copy and paste it in your google
Answer:
the equilibrium concentration of [PCl₅] is 3.64*10⁻³ M
Explanation:
for the reaction
PCl₅(g) → PCl₃(g) + Cl₂(g)
where
Kc= [PCl₃]*[Cl₂]/[PCl₅] = 2.0*10¹ M = 20 M
and [A] denote concentrations of A
if initially the mixture is pure PCl₅ , then it will dissociate according to the reaction and since always one mole of PCl₃(g) is generated with one mole of Cl₂(g) , the total number of moles of both at the end is the same → they have the same concentration → [PCl₃(g)] = [Cl₂]=0.27 M
therefore
Kc= [PCl₃]*[Cl₂]/[PCl₅] = 0.27 M* 0.27 M /[PCl₅] = 20 M
[PCl₅] = 0.27 M* 0.27 M / 20 M = 3.64*10⁻³ M
[PCl₅] = 3.64*10⁻³ M
the equilibrium concentration of [PCl₅] is 3.64*10⁻³ M