At an optimum pH of 7.0, there are more molecules per minute in all amounts of substrate thus this pH is ideal for maximum growth. 5. Enzymes function most efficiently at the temperature of a typical cell, which is 37 degrees Celsius. Increases or decreases in temperature can significantly lower the reaction rate.
D) because both reactions are occurring at the same rate. They are not equal but their concentrations are constant.
Given the data from the question, the mass of arsenic that contains 1.23×10²⁰ atoms is 0.0153 g
<h3>Avogadro's hypothesis </h3>
6.02×10²³ atoms = 1 mole of arsenic
But
1 mole of arsenic = 75 g
Thus, we can say that:
6.02×10²³ atoms = 75 g of arsenic
<h3>How to determine the mass that contains 1.23×10²⁰ atoms</h3>
6.02×10²³ atoms = 75 g of arsenic
Therefore,
1.23×10²⁰ atoms = (1.23×10²⁰ × 75) / 6.02×10²³ atoms)
1.23×10²⁰ atoms = 0.0153 g of arsenic
Thus, 1.23×10²⁰ atoms is present in 0.0153 g of arsenic
Learn more about Avogadro's number:
brainly.com/question/26141731
Answer:
514.5 g.
Explanation:
- The balanced equation of the reaction is: 2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂O.
- It is clear that every 2.0 moles of NaOH react with 1.0 mole of H₂SO₄ to produce 1.0 mole of Na₂SO₄ and 2.0 moles of 2H₂O.
- Since NaOH is in excess, so H₂SO₄ is the limiting reactant.
- We need to calculate the no. of moles of 355.0 g of H₂SO₄:
n of H₂SO₄ = mass/molar mass = (355.0 g)/(98.0 g/mol) = 3.622 mol.
Using cross multiplication:
∵ 1.0 mol H₂SO₄ produces → 1.0 mol of Na₂SO₄.
∴ 3.622 mol H₂SO₄ produces → 3.662 mol of Na₂SO₄.
- Now, we can get the theoretical mass of Na₂SO₄:
∴ mass of Na₂SO₄ = no. of moles x molar mass = (3.662 mol)(142.04 g/mol) = 514.5 g.
Hey there!:
Given the reaction:
2 C2H2 + 5 O2 → 4 CO2 + 2 H2O
5 moles O2 ------------- 4 moles CO2
3.00 moles O2 ---------- ( moles of CO2 ?? )
moles of CO2 = 3.00 * 4 / 5
moles of CO2 = 12 / 5
moles of CO2 = 2.4 moles
So, molar mass CO2 = 44.01 g/mol
Therefore:
1 mole CO2 -------------- 44.01 g
2.4 moles CO2 ---------- ( mass of CO2 )
mass of CO2 = 2.4 * 44.01 / 1
mass of CO2 = 106 g
Answer A
Hope that helps!