Answer:
This question is incomplete
Explanation:
This question is incomplete. However, the beaker that contained some water before NaOH were added means that the resulting solution in that beaker will be more dilute. When this diluted sodium hydroxide solution is added to HCl (not hci), the reaction below occurs
HCl + NaOH ⇒ NaCl + H₂O
The reaction above is a neutralization reaction. <u>The concentration of the acid (HCl) will reduce when a base (sodium hydroxide) is added and will also reduce more because of the presence of more water (in the base) which normally reduces the concentration of ions present in an acid or a base to become more dilute.</u>
Answer:
ΔG = - 442.5 KJ/mol
Explanation:
Data Given
delta H = -472 kJ/mol
delta S = -108 J/mol K
So,
delta S = -0.108 J/mol K
delta Gº = ?
Solution:
The answer will be calculated by the following equation for the Gibbs free energy
G = H - TS
Where
G = Gibbs free energy
H = enthalpy of a system (heat
T = temperature
S = entropy
So the change in the Gibbs free energy at constant temperature can be written as
ΔG = ΔH - TΔS . . . . . . (1)
Where
ΔG = Change in Gibb’s free energy
ΔH = Change in enthalpy of a system
ΔS = Change in entropy
if system have standard temperature then
T = 273.15 K
Now,
put values in equation 1
ΔG = (-472 kJ/mol) - 273.15 K (-0.108 KJ/mol K)
ΔG = (-472 kJ/mol) - (-29.5 KJ/mol)
ΔG = -472 kJ/mol + 29.5 KJ/mol
ΔG = - 442.5 KJ/mol