Answer:
3.
D. Philippine Atmospheric, Geophysical and Astronomical Services
Administration (PAGASA)
Explanation:
4.C. 62.0 kph
Answer:
Neon (Ne) has the most stable outer electron configuration because the outer electron is completely filled and it has octet structure
Explanation:
The configuration of these elements is as follows;
Cl₁₇ = 2, 8,7 (the outer electron is 7)
Ca₂₀ = 2,8,8,2 (the outer electron is 2)
Ne₁₀ = 2,8 (the outer electron is 8)
Na₁₁ = 2,8,1 (the outer electron is 1)
Based on the outer electron value above, Neon (Ne) has the most stable outer electron configuration because the outer electron is completely filled and it has octet structure.
A wave with low energy will also have long wavelengths and low frequencies.
The given in a single photon of a wave is given by Planck's equation:
E = hc/λ
and
E = hf
Where λ is the wavelength and f is the frequency of the photon. This means that energy is directly proportional to the frequency and inversely proportional to the wavelength. Thus, it is visible that photons with a lower frequency and a longer wavelength will have a lower energy.
Explanation :
As we know that Mendeleev arranged the elements in horizontal rows and vertical columns of a table in order of their increasing relative atomic weights.
He placed the elements with similar nature in the same group.
According to the question, the atomic weight of iodine is less than the atomic weight of tellurium. So according to this, iodine should be placed before tellurium in Mendeleev's tables. But Mendeleev placed iodine after tellurium in his original periodic table.
However, iodine has similar chemical properties to chlorine and bromine. So, in order to make iodine queue up with chlorine and bromine in his periodic table, Mendeleev exchanged the positions of iodine and tellurium.
As we know that the positions of iodine and tellurium were reversed in Mendeleev's table because iodine has one naturally occurring isotope that is iodine-127 and tellurium isotopes are tellurium-128 and tellurium-130.
Due to high relative abundance of tellurium isotopes gives tellurium the greater relative atomic mass.